По среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (см. анализ графиков и сами графики в главе 4);
Была посчитана повторяемость различных видов рефракции по значениям вертикального градиента dN/dH (см. таблицы 2,3).
После проведения всех расчетов, был сделан анализ полученных результатов (см. главу 4).
4. Вертикальные профили радиометеорологических величин
Для изучения закономерности распределения метеовеличин и показателя преломления воздуха в нижнем слое атмосферы летом был выбран город Хабаровск. Он расположен в юго – восточной части нашей страны (48°35′ с.ш. и 135°в.д.). Хабаровск относится к умеренному климатическому поясу, к области муссонного климата смешанных лесов Дальнего Востока. Средние температуры июля и января составляют + 16°C и – 24°C соответственно [5].
Как уже было сказано раньше, по среднемесячным значениям t, f, e, N на каждой высоте были построены графики вертикальных профилей этих величин (таблица 1).
Таблица 1 – Среднемесячные значения радиометеорологических величин на разных высотах
Высота, м | Средняя t°C | Средняя f% | Средняя е, гПа | Средний N, N - ед/м |
0 | 21,9 | 82 | 21,6 | 355,4 |
24 | 22 | 78 | 20,8 | 351 |
40 | 23,1 | 73 | 20,9 | 349,4 |
112 | 23,2 | 72 | 20,6 | 345,6 |
180 | 21,5 | 67 | 17,2 | 331,7 |
Далее приведен анализ полученных графиков.
4.1 Вертикальный профиль средней температуры июля
В умеренном поясе на суше в северном полушарии самым теплым месяцем является июль (именно этот месяц и был рассмотрен в данной работе).
Как уже известно, температура воздуха с высотой в среднем изменяется по линейному закону:
,(23)где Th – абсолютная температура на верхней границе слоя,
T0 – абсолютная температура у основания слоя толщиной h,
gt – вертикальный градиент температуры.
Если принять в соответствии с международной стандартной атмосферой температуру воздуха у земной поверхности (на «нулевой высоте») равной 15°C (288°K), а градиент температуры до высоты 11км равным 6,5°C на километр подъема, то получится «стандартная» зависимость температуры от высоты (в километрах):
.(24)С годовыми и суточными изменениями приземного значения температуры связаны характер кривой высотного распределения температуры и градиенты пограничного слоя тропосферы. Так, например, летом высотные зависимости температуры от дня к ночи изменяют свой характер, а градиенты изменяют знак с положительного (уменьшение t с высотой) на отрицательный (рост t с высотой – инверсия). В этом смысле стандартное линейное падение температуры с высотой не отражает процессов, происходящих в пограничном слое тропосферы.
В летний период на высотах до 100 м существует (в среднем сезонном профиле) инверсия температуры, являющаяся следствием ночных приземных инверсий. Выше 100 м наблюдается убывание t с высотой [6].
В рассмотренном мною случае, в среднемесячном вертикальном профиле температуры также имеется слой инверсии и слой падения t (см. рисунок 1).
Из графика видно, что инверсия наблюдается до высоты 80 м. В слое от 0 до 24 м слабо выраженная инверсия (градиент равен – 0,004°C/м). Выше 24 м идет резкое увеличение температуры с высотой и продолжается до 40 м (градиент в этом слое составляет – 0,069°C/м). В слое от 40 до 80 м наблюдается уменьшение интенсивности инверсии (градиент слоя равен – 0,005°C/м) – в этом слое инверсия практически такая же как и в слое от 0 до 40 м (различие составляет 0,001°C). На 80 м наблюдается максимальное среднемесячное значение t = 23,3°C. Начиная с 80 м идет уменьшение температуры с высотой (можно сказать, что на уровне 80 м происходит изгиб кривой в сторону уменьшения температуры – это критическая точка). В слое от 80 до 112 м идет слабое падение t (градиент составляет 0,003°C/м). А вот начиная со 112 м и до 180 м наблюдается резкое падение температуры (здесь градиент равен 0,025°C/м). На 180 м наблюдается минимальное среднемесячное значение t = 21,5°C.
Рисунок 1 – Вертикальный профиль средней температуры июля
4.2 Вертикальные профили средней относительной влажности и средней упругости водяного пара июля
Как мы знаем, основной вклад в изменения коэффициента преломления вносят изменения значений влажности. В тропосфере северного полушария независимо от сезона года влажность воздуха уменьшается с высотой, достигая минимумы вблизи тропопаузы. В стандартной атмосфере влажность воздуха убывает с высотой по эмпирическому соотношению (14).
Среднегодовые и сезонные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей. «Мгновенные» профили обладают значительно более сложной конфигурацией с различного рода изгибами и изломами и характеризуются большой изменчивостью во времени [6].
Вертикальный профиль средней относительной влажности июля не имеет больших изломов, а ведет себя довольно сглажено (см. рисунок 2). Падение f с высотой совсем небольшое. В слоях от 0 до 40 м и от 112 до 180 м более выраженное уменьшение влажности. А вот в слое от 40 до 112 м ее падение практически не наблюдается. Вообще разница f между нулевым уровнем и высотой 180 м составляет всего 15%.
Рисунок 2 – Вертикальный профиль средней относительной влажности июля
Вертикальный профиль средней упругости водяного пара июля практически повторяет ход вертикального профиля f (см. рисунок 3). В слоях от 0 до 24 м и от 112 до 180 м наблюдается более выраженное падение, а в слое от 24 до 112 м изменений в упругости водяного пара практически не наблюдается (отличие состоит в том, что относительная влажность практически не меняется с 40 м, а упругость водяного пара с 24 м). Разница е между нулевым уровнем и высотой 180 м составляет всего 4,4 гПа. Из графиков видно, что, действительно, среднемесячные профили распределения влажности не отражают «мгновенных», существующих в данный момент времени профилей.
Рисунок 3 – Вертикальный профиль средней упругости водяного пара июля
4.3 Вертикальный профиль среднего показателя преломления воздуха в июле
Вследствие большой изменчивости показатель преломления удобно характеризовать средними (усредненными за определенный период времени) величинами. Конкретные профили коэффициента преломления, полученные во время одного зондирования, существенно отличаются от усредненных высотных распределений N и от стандартной радиоатмосферы. Эти отличия обусловлены нерегулярным характером высотного распределения температуры и влажности, которое изменяется во времени и зависит от погоды и климата [6].
Представление о закономерностях среднего изменения с высотой коэффициента преломления атмосферы можно получить из анализа выражения (9). Из этого выражения следует, что увеличение Р и е вызывает рост N, в то время как увеличение Т приводит к уменьшению N. Если взять частные производные соотношения (9) последовательно по Р, е и Т, то получится выражение для оценки величины вклада, вносимого каждым метеорологическим параметром в изменение N. Для средних летних условий это выражение примет вид:
,(25)где ∆T, ∆P, ∆e – приращения средних значений температуры, давления, упругости водяного пара соответственно.
Из выражения (25) видно, что изменения величины N в одной точке в основном зависят от изменения температуры и влажности, причем влияние влажности заметно превосходит влияние температуры, т.к. величины ∆e и ∆T при выбранной системе единиц примерно одного порядка; влияние давления в этом случае настолько мало, что им можно даже пренебречь [7].
По средним значениям N на высотах 0, 24, 40, 112, 180 м был построен график вертикального профиля показателя преломления воздуха в июле (см. рисунок 4). Из графика видно, что показатель преломления убывает с высотой. Это происходит потому, что (если опять же анализировать выражение (9) ) Р и е с высотой уменьшаются, а Т увеличивается до определенного уровня, а потом уменьшается. В слое от 0 до 24 м идет достаточно выраженное падение N (градиент здесь равен – 0,183 N – ед/м). В слое от 24 до 40 м немного уменьшается интенсивность падения N, но не сильно (градиент составляет – 0,100 N–ед/м). А вот от 40 до 112 м наблюдается самое маленькое (незначительное) уменьшение N с высотой (градиент слоя составляет всего – 0,053 N – ед/м). Начиная со 112 и до 180 м наблюдается самое сильное падение N с высотой (градиент здесь самый большой и равен – 0,204 N – ед/м). Разница между нулевым уровнем и высотой 180 м составляет 23,7 N – ед/м (такая небольшая разница скорее всего обусловлена сглаженным среднемесячным ходом влажности – изменения ее тоже очень маленькие по вертикали).
Данный, среднемесячный профиль N близок к стандартной линейной зависимости. И поэтому можно аппроксимировать этот профиль линейной зависимостью (на графике аппроксимация показана черной линией).
Уравнение этой линии выглядит следующим образом:
,(26)где у – значение N,
х – значение высоты.
Величина достоверности аппроксимации составляет: R2 = 0,9356.
Рисунок 4 – Вертикальный профиль среднего показателя преломления воздуха в июле