Число гроз и их интенсивность известным образом отражаются и на человеке и его имуществе. Так, из статистических данных, приводимых еще Будэном (Budin), видно, что максимумы смертных случаев от удара молнии падают на годы максимального напряжения в деятельности Солнца, а минимумы их - на годы минимума пятен. В то же время русский лесовод Тюрин отмечает, что, согласно его исследованиям, произведенным на массовом материале, пожары в брянском лесном массиве принимали стихийный характер в 1872, 1860, 1852, 183б, 1810, 1797, 1776 и 1753 гг. В северных лесах также может быть отмечена периодичность, равная в среднем 20 годам, причем даты лесных пожаров на севере во многих случаях совпадают с указанными датами, что показывает на влияние одной и той же причины - засушливые эпохи, некоторые из них падают на годы максимумов солнцедеятельности. Можно отметить, что в суточном ходе грозовой деятельности и в суточном ходе числа пожаров от молнии наблюдается также хорошая зависимость.
Шаровая молния представляет собой светящуюся сферу, которая возникает во время грозы. Чаще всего она красная, хотя нередко сообщалось о светящихся шарах других цветов, включая желтый, белый, голубой и зеленый. Размеры ее бывают самыми разными, однако наиболее обычен диаметр около 15 см. Шаровая молния представляет собой разительный контраст с обычной молнией, так как она часто движется горизонтально вблизи земли с небольшой скоростью. Она может на какое-то время застыть неподвижно или изменить направление своего движения. В отличие от мгновенной вспышки обычной молнии шаровая молния существует сравнительно долго - несколько секунд или даже минут. Перемещаясь, светящаяся сфера нередко оказывается внутри помещений и проходит иногда совсем близко от наблюдателя. Она проникает в помещение через окно или через печную трубу и может покинуть его через такое же отверстие. Профессор Борн (факультет молекулярной физики Сус-Секского университета) вспоминает, что в дни его детства окна их дома во время грозы всегда оставлялись открытыми, чтобы шаровая молния, если она вдруг появится, могла вылететь беспрепятственно. Зенкевич, наоборот, рассказывает, что в их доме окна во время грозы закрывались, чтобы сквозняки не втянули огненный шар в комнату. Во многих случаях люди, видевшие шаровую молнию, отмечали, что шар, хотя он и чрезвычайно ярок, не испускает тепла и исчезает бесшумно. В других случаях происходили сильные взрывы, разбрасывающие по сторонам и повреждавшие оказавшиеся поблизости предметы.
В этих общих описаниях замечается большое разнообразие. Светящаяся сфера редко представляет собой правильный шар. Часто это масса довольно неправильной формы, иногда с несколькими выступами. Шаровая молния может испускать искры. В одних случаях границы ее отчетливы, в других несколько размыты. Часто сообщается о шипении или потрескивании, словно при электрическом разряде, а иногда шар движется совершенно бесшумно. Он то падает из тучи прямо на землю, как тело с заметной массой, то парит над землей или даже отскакивает от нее, как бы обладая упругостью. В некоторых случаях шаровую молнию, по-видимому, несет ветер, в других она движется в направлении, прямо противоположном ветру.
Такое большое разнообразие сообщаемых свойств приводит к значительной путанице при попытках найти четкое объяснение явлению шаровой молнии. Теорий было, пожалуй, даже слишком много. В большинстве объяснений грозовому электричеству отводится роль возбуждающего фактора, вызывающего возникновение светящейся массы. Длительную же активность шара пытаются объяснить в первую очередь химическими реакциями или электрохимическими процессами. Химические теории, если рассматривать их в порядке возникновения, исходили из того, что шар состоит из веществ, возникающих при грозовых разрядах: йодистого азота, смеси водорода и кислорода или озона, - свойства которых определяют энергию, высвобождающуюся при последующем распаде шаровой молнии. Высказывалась идея, что при вспышке молнии образуется активный азот и что этот выделившийся азот "горит" затем в атмосфере, в результате чего возникают окислы азота. Чисто электрические теории рассматривают шаровую молнию как кистевой разряд. Выдвигалось предположение, что короткий участок канала молнии отделяется от нее в виде вихря. Шаровую молнию могло бы также создать испарение какого-нибудь металла - например, меди - при интенсивной вспышке обычной молнии. Обсуждалась также идея таких распределений электрически заряженных частиц пыли, дождевых капель или ионов атмосферных газов, в которых нейтрализация противоположных зарядов каким-то образом замедляется. Многие из совсем недавно предложенных моделей используют теорию плазмы - область физики, исследующую свойства материи при высоких температурах и быстро развивающуюся сейчас в связи с проблемой управляемых термоядерных реакций.
В данной работе использовались метеорологические данные о грозовой деятельности по семи станциям республики Татарстан: Азнакаево (1948-1980), Актаныш (1943-1980), Чистополь (1940-1960), Чулпаново (1940-1980), Муслюмово (1946-1980), Аксубаево (1940-1960) и метеорологической станции Казанского Государственного Университета (1900-2006). Данные приводятся с месячной дискретизацией. В качестве индексов грозовой активности бралось число дней с грозой в декаду. А так же ежемесячные данные о солнечной активности - числа Вольфа за 1940-1980 г. г.
По данным за указанные годы рассчитаны основные статистические характеристики для индексов грозовой активности.
Метеорология имеет дело с огромными массивами наблюдений, которые нужно анализировать для выяснения закономерностей, существующих в атмосферных процессах. Поэтому в метеорологии широко применяются статистические методы анализа больших массивов наблюдений. Применение мощных современных статистических методов помогает яснее представить факты и лучше обнаружить связь между ними.
Среднее значение временного ряда рассчитывается по формуле
Ḡ = ∑Gi / N
где 1< i <n, N- число данных (объем выборки).
В метеорологии используется средняя специального типа, которую называют нормой.
Дисперсия показывает разброс данных относительно среднего значения и находится по формуле
Ϭ² = ∑ (Gi - Ḡ) ² / N, где 1< i <n
Величина, называемая среднеквадратическим отклонением, представляет собой квадратный корень из дисперсии.
Ϭ = ∑ (Gi - Ḡ) ² / N, где 1< i <n
Все большее применение в метеорологии находит наиболее вероятное значение случайной переменной - мода.
Также для характеристики метеовеличин используют асимметрию и эксцесс. Если среднее значение больше моды, то распределение частот называют положительно асимметричным. Если среднее значение меньше моды, то отрицательно асимметричным. Коэффициент асимметрии вычисляется по формуле
A = ∑ (Gi - Ḡ) ³ / NϬ³, где 1< i <n
Асимметрия считается малой, если коэффициент асимметрии |A|≤0.25. Асимметрия умеренная, если 0,25<|А|>0.5. Асимметрия большая, если 0,5<|А|>1,5. Исключительно большая асимметрия, если |А|>1,5. Если |А|>0, то распределение имеет правостороннюю асимметрию, если |А|<0, то левостороннюю асимметрию. Для распределения частот, имеющих одинаковые значения средней, асимметрии могут отличаться величиной эксцесса
Е = (∑ (Gi - Ḡ) ⁴) - 3/NϬ⁴, где 1< i <n
Эксцесс считается малым, если |E|≤0.5; умеренным, если 1≤|E|≤3 и большим, если |E|>3. Если - 0.5≤Е≤3, то эксцесс приближается к нормальному.