Смекни!
smekni.com

Грозовая деятельность в Предкамье (стр. 3 из 6)

По данным за указанные годы рассчитаны основные статистические характеристики для индексов грозовой активности.

2.2 Основные статистические характеристики

Метеорология имеет дело с огромными массивами наблюдений, которые нужно анализировать для выяснения закономерностей, существующих в атмосферных процессах. Поэтому в метеорологии широко применяются статистические методы анализа больших массивов наблюдений. Применение мощных современных статистических методов помогает яснее представить факты и лучше обнаружить связь между ними.

Среднее значение временного ряда рассчитывается по формуле

Ḡ= ∑Gi / N

где 1< i<n, N-число данных (объем выборки). В метеорологии используется средняя специального типа, которую называют нормой.

Дисперсия показывает разброс данных относительно среднего значения и находится по формуле

Ϭ²= ∑(Gi - Ḡ)²/ N , где 1< i <n

Величина, называемая среднеквадратическим отклонением, представляет собой квадратный корень из дисперсии.

Ϭ= ∑(Gi - Ḡ)²/ N , где 1< i <n

Все большее применение в метеорологии находит наиболее вероятное значение случайной переменной – мода.

Также для характеристики метеовеличин используют асиметрию и эксцесс.

Если среднее значение больше моды, то распределение частот называют положительно асиметричным. Если среднее значение меньше моды, то отрицательно асиметричным. Коэффициент асимметрии вычисляется по формуле

A = ∑(Gi - Ḡ)³ / NϬ³, где 1< i <n

Асиметрия считается малой, если коэффициент асиметрии |A|≤0.25. Асиметрия умеренная, если 0,25<|А|>0.5. Асиметрия большая, если 0,5<|А|>1,5. Исключительно большая асиметрия, если |А|>1,5. Если |А|>0 , то распределение имеет правостороннюю асиметрию, если |А|<0, то левостороннюю асиметрию.

Для распределения частот, имеющих одинаковые значения средней, асиметрии могут отличаться величиной эксцесса

Е = ∑(Gi - Ḡ)⁴ / NϬ⁴, где 1< i <n

Эксцесс считается малым, если |E|≤0.5; умеренным, если 1≤|E|≤3 и большим, если |E|>3. Если -0.5≤Е≤3, то эксцесс приближается к нормальному.

Коэффициент корреляции – это величина, показывающая взаимосвязь между двумя коррелируемыми рядами.

Формула коэффициента корреляции имеет следующий вид :

R = ∑((Xi-X)*(Yi-Y))/ϬxϬy

где X и Y – средние величины, Ϭx и Ϭy – среднеквадратическиеотклонения.

Свойства коэффициента корреляции :

1. Коэффициент корреляции независимых величин равен нулю.

2. Коэффициент корреляции не изменяется от прибавления к x и y каких-либо постоянных (неслучайных) слагаемых, а также не изменяется от умножения величин x и y на положительные числа (постоянные).

3. Коэффициент корреляции не изменяется при переходе от x и y к нормированным величинам.

4. Диапазон изменения от -1 до 1.

Необходимо делать проверку надежности наличия связи, надо оценить значимость отличия коэффициента корреляции от нуля.

Если для эмпирического R произведение │R│√N-1 окажется больше некоторого критического значения, то с надежностью S можно утверждать, что коэффициент корреляции будет достоверен (достоверно отличатся от нуля).

Корреляционный анализ позволяет установить значимость (неслучайность) изменения наблюдаемой, измеряемой случайной величины в процессе испытаний, позволяет определить форму и направление существующих связей между признаками. Но ни коэффициент корреляции, ни корреляционное отношение не дают сведений о том, насколько может изменяться варьирующий, результативный признак при изменении связанного с ним факториального признака.

Функция, позволяющая по величине одного признака при наличии корреляционной связи находить ожидаемые значения другого признака, называется регрессией. Статистический анализ регрессии называется регрессионным анализом. Это более высокая ступень статистического анализа массовых явлений. Регрессионный анализ позволяет предвидеть Y по признаку X :

Yx-Y=(Rxy*Ϭy*(X-X))/ Ϭx (2.1)

Xy-X=(Rxy* Ϭx*(Y-Y))/ Ϭy(2.2)

где X и Y – соответствуют среднему, Xy и Yx – частные средние, Rxy – коэффициент корреляции.

Уравнения (2.1) и (2.2) можно записать в виде :

Yx=a+by*X (2.3)

Xy=a+bx*Y (2.4)

Важной характеристикой уравнений линейной регрессии является средняя квадратическая погрешность. Она имеет следующий вид :

для уравнения (2.3) Sy= Ϭy*√1-R²xy(2.5)

для уравнения (2.4)Sx= Ϭx*√1-R²xy(2.6)

Ошибки регрессии Sx и Sy позволяют определить вероятную (доверительную) зону линейной регрессии, в пределах которой находится истинная линия регрессии Yx ( или Xy), т.е. линия регрессии генеральной совокупности.


Глава 3. Анализ расчетов

3.1 Распределение основных статистических характеристик

Рассмотрим некоторые статистические характеристики числа дней с грозой в Предкамье на семи станциях (Таблицы 1-7). В связи с очень малым числом дней с грозой в зимнее время, в данной работе будет рассматриваться период с апреля по сентябрь.

Станция Тетюши:

В апреле максимальное среднедекадное значение наблюдается в 3 декаде месяца Ḡ=0,20. Модальные значения во всех декадах равны нулю, следовательно, слабая грозовая деятельность. Максимум дисперсии и среднеквадратического отклонения также наблюдаются в 3 декаде Ϭ2=0.31; Ϭ=0.56. Ассиметрия характеризуется исключительно большим значением во второй декаде А=4,35. Также во 2 декаде наблюдается большое значение эксцесса E=17,79.

В мае, вследствие увеличения притоков тепла, увеличивается грозовая деятельность. Максимальное среднедекадное значение наблюдалось в 3 декаде и составило Ḡ =1.61. Модальные значения во всех декадах равны нулю. Максимальные значения дисперсии и среднеквадратического отклонения наблюдаются в 3 декаде Ϭ2=2.59; Ϭ=1.61. Значения ассиметрии и эксцесса убывают от первой декады к третьей (в первой декаде А=1,23; Е=0,62; в третьей декаде А=0,53; Е=-0,95).

В июне максимум среднедекадного значения приходится на третью декаду Ḡ=2,07. Наблюдается увеличение значений дисперсии и среднеквадратичного отклонения по сравнению с апрелем и маем: максимум во второй декаде (Ϭ2=23,37; Ϭ=1,84), минимум в первой (Ϭ2=1,77; Ϭ=1,33). Модальные значения в первых двух декадах равны нулю, в третьей декаде оно составило М=2. Ассиметрия во всех декадах большая и положительная, в третьей декаде. Эксцесс в первых двух декадах характеризуется малыми значениями, в третьей декаде его значение повысилось Е=0,67.

Наибольшее среднедекадное значение в июле Ḡ =2,05 во второй декаде. Модальные значения в первых двух декадах равны 1 и 2 соответственно, в третьей нулю. Максимальные значения дисперсии и среднеквадратичного отклонения наблюдаются во второй декаде и составляют Ϭ2=3,15 и Ϭ=1,77 соответственно, минимальные в первой декаде Ϭ2=1,93 и Ϭ=1,39 соответственно. Асиметрия характеризуется большими, положительными значениями: максимум в первой декаде А=0,95, минимум во второй декаде А=0,66. Эксцесс во второй и третьей декадах мал и имеет во второй декаде отрицательное значение, на первую декаду приходится максимум Е=1,28, минимум во второй декаде Е=-0,21.

В августе грозовая деятельность уменьшается. Наибольшее среднедекадное значение отмечается в первой декаде Ḡ =1,78, наименьшее – в третьей Ḡ =0.78. Модальные значения в первой и третьей декадах равны нулю, во второй – единице. Наблюдается уменьшение значений дисперсии и среднеквадратичного отклонения: максимум в первой декаде (Ϭ2=3,33; Ϭ =1,82), минимум в третьей (Ϭ2=1,23; Ϭ=1,11). Происходит небольшое увеличение значений асиметрии и эксцесса от первой декады к третьей: максимумы в третьей декаде А=1,62, Е=2,14, минимумы во второй декаде А=0.40, Е=-0,82.

В сентябре максимальное среднедекадное значение составило Ḡ =0,63 в первой декаде месяца. Модальные значения равны нулю. Отмечается уменьшение значений дисперсии и среднеквадратического отклонения от первой декады к третьей (Ϭ2=0,84; Ϭ =0,92 – в первой декаде и Ϭ2=0,11;Ϭ =0,33 – в третьей).

Обобщая вышесказанное, делаем вывод, что значения таких статистических характеристик как мода, дисперсия и среднеквадратическое отклонение увеличиваются вместе с повышением грозовой деятельности: максимальные значения наблюдаются в конце июня – начале июля (рис.1).

Рис.1

Асиметрия и эксцесс наоборот принимают наибольшие значения во время минимальной грозовой деятельности (апрель, сентябрь), в период максимальной грозовой деятельности асиметрия и эксцесс характеризуются большими значениями, но меньшими по сравнению с апрелем и сентябрем (рис.2).

Рис.2

Максимальная грозовая деятельность наблюдалась в конце июня – начале июля (рис.3).

Рис.3

Проанализируем остальные станции, опираясь на графики, построенные по рассчитанным статистическим величинам на этих станциях.

Станция Лаишево:

На рисунке изображено среднедекадное значение числа дней с грозой. По графику видно, что имеется два максимума грозовой деятельности, приходящиеся на конец июня и конец июля, равные Ḡ=2,71 и Ḡ=2,52 соответственно. Также можно отметить скачкообразное возрастание и убывание, что говорит о сильной изменчивости погодных условий в данном районе (рис.4).

Рис.4


Мода, дисперсия и среднеквадратическое отклонение имеют наибольшие значения в период с конца июня по конец июля, что соответствует периоду наибольшей грозовой активности. Максимальная дисперсия наблюдалась в третьей декаде июля и составила Ϭ2=4,39 (рис.5).