Смекни!
smekni.com

Ландшафтно-экологические методы исследований (стр. 9 из 27)

Таким образом, в единой иерархической системе таксономических единиц намечаются три уровня организации - планетарный (глобальный), региональный и топологический (локальный), обусловленные разными закономерностями дифференциации географической оболочки на каждом из этих уровней. Это положение признается сейчас многими физико-географами. Наиболее резко против него выступал лишь Д.Л. Арманд, считая, что природа нераздельна, а поэтому таксономическая система не имеет «площадок» или «основных единиц».

Закономерности физико-географической дифференциации на разных уровнях и ступенях выявлены еще далеко не достаточно, что приводит к параллельному созданию таксономических систем ПТК, отличающихся как по количеству ступеней, так и по их соподчиненности.

В зависимости от масштаба работ в центре внимания исследователя могут быть не только ландшафты и их морфологические единицы, но и более крупные природные территориальные комплексы: физико-географические районы, провинции, зоны (отрезки зон внутри равнинных стран, называемые часто зональными областями) или горные области, физико-географические страны. Комплексы планетарного уровня вплоть до географической оболочки в целом вместе с аквальными комплексами также изучают физико-географы.

Разные уровни организации ПТК влияют и на специфику их исследования. Изучение ПТК топологического уровня (ландшафта и его морфологических единиц) базируется главным образом на первичной информации, собираемой непосредственно в поле, и ведется преимущественно индуктивным методом (от частного к общему). Планетарный уровень исследования строится в основном на использовании метода дедукции (от общего к частному) и вторичной (переработанной и обобщенной) информации о всей географической оболочке в целом и об отдельных компонентных оболочках. Комплексы этого уровня изучаются в камеральных условиях. При изучении ПТК регионального уровня исследование ведется путем сочетания дедуктивного (от более крупных единиц к более мелким, обособившимся в их пределах) и индуктивного (анализа внутренней структуры изучаемых ПТК) методов и основывается преимущественно на вторичной информации о различных компонентах природы и ПТК планетарного и топологического уровней. Исследование ПТК регионального уровня проводится преимущественно в камеральных условиях, доля полевых исследований при этом сокращается по мере возрастания ранга изучаемых комплексов. Основным методом их изучения является физико-географическое районирование.

В связи с тем, что специфика более крупных ПТК определяется особенностями ландшафтов, их слагающих, изучение любых комплексов регионального уровня не может производиться на основе только компонентного анализа без внимательного рассмотрения ландшафтной структуры территории, раскрывающей степень разнообразия и внутреннее строение каждого региона.

В понятие структура ПТК входит не только состав его элементов, но и связи — вещественные, энергетические, информационные. Каждый ПТК обладает своей специфической структурой - устойчивой упорядоченностью свойств, сохраняющейся при различных внутренних и внешних изменениях. Внутренние связи ПТК - связи между его структурными (составными) частями, т.е. между компонентами природы и между входящими в его состав более мелкими комплексами - определяют целостность и индивидуальность ПТК. Внешние связи - это связи между соседними одноранговыми комплексами, между изучаемым комплексом и вмещающим его более сложным ПТК и т.д. Они обеспечивают связи изучаемого комплекса с окружающей средой.

Следовательно, каждый ПТК любой размерности - открытая система, получающая вещество, энергию и информацию извне (от своей среды, окружения) и передающая ее другим ПТК (геосистемам). Различают связи прямые и обратные. Обратные связи в свою очередь делятся на положительные и отрицательные. При положительных связях эффект внешнего воздействия усиливается системой и может привести к ее быстрому разрушению, ибо она сама работает на разрушение. Примером может служить образование лавин. Отсюда и выражение - лавинообразный процесс. При отрицательной обратной связи эффект внешнего воздействия ослабляется, «гасится» системой, а сама система продолжает оставаться в пределах своего инварианта. Отрицательные обратные связи — это сопротивление системы внешнему воздействию. Они обеспечивают устойчивость ПТК, его способность оставаться самим собой, несмотря на внешние воздействия.

При вычленении ПТК необходимо руководствоваться как закономерностями внутренних взаимосвязей комплекса, создающих его качественную определенность, так и взаимодействиями изучаемого комплекса с окружающими его ПТК.

Внутренние закономерности лучше прослеживаются при ближайшем рассмотрении и детальном изучении ПТК. Чтобы их познать, исследователь должен находиться внутри комплекса. А чтобы обнаружить его отличие от соседних комплексов, нужно взглянуть на него со стороны, сравнить с другими комплексами, охватить единым взглядом весь комплекс на фоне окружающих его ПТК. Долгое время такой «взгляд со стороны» оказывался возможным лишь в отношении самых мелких ПТК — фаций, подурочищ и урочищ. В то же время достаточно крупные ПТК можно было изучать, лишь находясь внутри комплекса и не имея возможности взглянуть на него с некоторого расстояния, увидеть его на фоне окружающих ПТК.

Использование авиации позволило исследователям «подняться над» крупными урочищами, местностями и ландшафтами, следствием чего явилась большая объективность в проведении границ этих комплексов. И лишь выход человека за пределы географической оболочки, в Космос, позволил даже на такие крупные комплексы, как физико-географические страны, взглянуть «со стороны» как на части географической оболочки, увидеть их в сравнении друг с другом, в результате чего многие границы между довольно крупными и сложными ПТК, которые при наземных исследованиях считались переходными полосами, оказались хорошо заметными, четкими, линейными на аэрофото- и космоснимках.

Таким образом, сложность разграничения ПТК заключается в том, что исследователь должен одновременно учитывать множество как внутренних, так и внешних связей комплекса.

Стремление глубже познать отдельные специфические черты ПТК или влияние определенного фактора на его особенности нередко заставляет исследователя сосредоточить внимание на ограниченном наборе свойств и связей комплекса. В связи с этим появилось представление о различных структурах ПТК: пространственных, временных, функциональных и др. Внутри каждой отдельной структуры связи теснее, чем между разными структурами. Именно этим и вызвано относительное обособление самих структур, их вычленение из сложного клубка разнообразных связей ПТК, относительная их самостоятельность. В то же время все структуры в ПТК тесно переплетены между собой, взаимосвязаны и взаимообусловлены. Они образуют не случайный конгломерат структур, а единую интегральную структуру. Благодаря ей и возникает качественная определенность и пространственная ограниченность ПТК, его внутренняя упорядоченность и своеобразие. Эта сложная интегральная структура ПТК, включающая все многообразие его связей, может быть названа ландшафтной структурой.

Сложность и многоплановость ландшафтной структуры создают объективные предпосылки для возникновения разных направлений ее исследования, обусловливают необходимость сочетания различных аспектов изучения ландшафтной структуры для глубокого познания сущности ПТК, разработки научно обоснованных географических прогнозов и рекомендаций по рациональному использованию различных ПТК.

2.3 Взаимодействие природных и природно-антропогенных геосистемс глобальными факторами

Как отмечал Н.А. Солнцев, геолого-геоморфологическая основа играет особую роль в ПТК. Она квазистационарна (почти постоянна) для остальных компонентов. Как твердое тело, она довольно стабильна, и в случае превышения энергетического порога воздействия разрушается катастрофически. Разрушения носят необратимый характер, причем как для разрушения, так и для восстановления требуются максимальные, по сравнению с другими компонентами, энергетические затраты. Биота - живая часть геосистемы. Геома и биота - главные составляющие ПТК, при этом вторая гораздо более мобильна, чем первая. Поэтому, приступая к картографированию геосистем, мы в первую очередь обращаем внимание на геолого-геоморфологическую основу. Но мы были бы неправы, унаследовав на все времена и все случаи жизни лишь результат, а не методы его получения.

Метод, благодаря которому Н.А. Солнцев сделал свои выводы, - это метод попарного сравнения компонентов, исследования на максимум и минимум и противопоставления их прямо противоположных свойств. В чем «сила» геомы? В большой потенциальной энергии связей твердого вещества, в том, что период ее изменения по отношению к длительности человеческой жизни стремится к очень большим числам (для нас как бы к бесконечности). Мы можем сейчас наблюдать на земной поверхности породы, образовавшиеся миллиарды лет назад. Наоборот, многие представители биоты способны дать несколько поколений в день. Период изменений очень мал, но частота (величина, обратная периоду) также может стремиться к большому числу. Да еще их продукцию надо умножить на количество организмов. Таким образом, «сила» биоты заключается в скорости ее изменения, в частоте повторения циклов размножения. Следует проводить эту операцию в каждом конкретном случае, уметь переходить от абсолютных утверждений типа «биота всегда слабее» к относительным, по отношению к определенному периоду, определенным объектам. Геосистема взаимодействует со всеми глобальными факторами. Внешние воздействия на геолого-геоморфологическую основу передаются ею всем другим компонентам ПТК не только непосредственно, сразу (как, например, нагрев поверхности Солнцем), но и большей частью через какое-то время в суммированном виде, значительно преобразованном участием других компонентов (например, изменение морфологической структуры ландшафта под влиянием эрозии). Геолого-геоморфологическая основа наиболее самостоятельна (наиболее независима от глобальных факторов в пределах характерного времени существования большинства конкретных ПТК) и более инерционна (опять-таки, смотря в каком случае).