Глобальное потепление климата практически охватило как Северное, так и Южное полушарие. Глобальное повышение температуры, с учетом территории континентов и акватории океанов, за последние 100 лет составило 0,830С. При этом Северное полушариепрогрелось на 0,30С больше, чем Южное, более океаническое и с большей массой льда.
Потепление на территории континентов составило 1,60C, а в районе морской поверхности – около 0,80C. Таким образом, разница потепления на суше по сравнению с акваторией океана составила около 0,80С [10].
Анализ колец древесины лиственницы (Larixsibirica) из северных районов Сибири (62,5 и 67,20 с. ш.) с 914 по 1990 г. показал, что, несмотря на относительно холодную погоду в 1960 – 1970 гг., температура воздуха в XX столетии была самой высокой за последние 1000 лет и на 0,130С превышала температуру воздуха климатического оптимума средних веков («потепление викингов») [7].
Материалы полярных исследований указывают на то, что температура воды в районе Северного полюса выросла на 20С, вследствие чего началось подтаивание льда снизу.Температура воды в тропических широтах в 1995 году также была значительно выше нормы, наиболее высокие значения температуры были зафиксированы в районе Азорского максимума в Атлантике и в экваториальных широтах Тихого океана.
Согласно данным измерений температуры поверхности почвы в 56 отработанных нефтяных скважинах в Канадских прериях на площади более 7 млн. км2, со второй половины XX века отмечается статистически значимое увеличение температуры поверхности почвы в среднем на 2,10С за 100 лет, что хорошо согласуется с трендом температуры воздуха для этой территории, равным 2,00С за 100 лет.
Развитие потепления и увеличение контрастности температур между океаном и континентами, между северными и южными широтами приводит к интенсификации циркуляционных процессов в атмосфере с возрастанием в Северном полушарии переноса с запада на восток, смещением и усилением центров низкого давления, например, Алеутская депрессия увеличилась более, чем на 6 млн. км2. Это вызвало увеличение количества глубоких циклонов над Европой на 50%. Происходит заметная активизация циклональных процессов и над Восточной Европой, в результате чего в последнее десятилетие возросло количество циклонов на 12% (в августе – на 31%, в сентябре – на 38%). Возросло число атлантических (на 48%) и западно-европейских (на 31%) циклонов с одновременным ростом их водности на 35% и 18% на фоне глобального повышения температуры воздуха. Это привело к росту облачности и атмосферных осадков.
Существенное возрастание количества ураганов и тропических циклонов происходит в северной части Атлантического океана. Оно возросло в четыре раза по сравнению с началом текущего столетия. Увеличение количества тропических циклонов на 30% наблюдается на востоке северной части Тихого океана.
Потепление климата привело к интенсификации процессов водообмена. Возросло испарение с океанической поверхности приблизительно на 4%, что привело к изменению динамики тепловлагообмена между океаном, атмосферой и континентами. Материалы спутниковых наблюдений показывают, что в атмосфере происходит постоянный рост облачности, как над океанами, так и над континентами и это увеличение составляет почти 10%.
Облачность является мощным фактором, регулирующим тепловое состояние и увлажнение земной поверхности. Влияние диапазона колебаний облачности в природе на изменение температуры воздуха и количества осадков на порядок превышает эффект, обуславливаемый ростом содержания в атмосфере парниковых газов антропогенного происхождения. Наблюдаемый рост облачности является мощным фактором, который сдерживает потепление климата.
Рост испарения, как с морской поверхности, так и с территории суши, вызвавший рост облачности, привел к увеличению количества атмосферных осадков, как над акваторией океана, где их выпадает около 80%, так и над территорией суши. Увеличение количества осадков в среднем составило около 3 – 4%. Наибольший прирост осадков характерен для приокеанических склонов континентов и, особенно – над островами, в то время как во внутриконтинентальных районах они могли и сокращаться вследствие меридиональных градиентов температур и снижения поступления влаги в центральных районах суши.
В работах О. А. Дроздова и А. С. Григорьевой (1963, 1971) установлено, что, хотя общая картина изменений количества выпадающих осадков при потеплении или похолодании в высоких широтах довольно сложна, в районах недостаточного увлажнения умеренных широт преобладает тенденция к увеличению количества осадков при понижении температуры в Арктике. Этот эффект Дроздов и Григорьева объяснили усилением переноса водяного пара в глубь материков при увеличении контраста температуры между низкими и высокими широтами.
С изложенной выше концепцией хорошо согласуются результаты исследования Лэма, в котором были построены мировые карты аномалий осадков для периода с повышенными и пониженными средними температурами воздуха у земной поверхности (1974). Из этих карт видно, что во время глобальных похолоданий суммы осадков увеличивались на большей части поверхности континентов в средних широтах, уменьшались в субтропической и тропической зонах пояса высокого давления и увеличивались в экваториальных широтах. Эти данные подтверждаются и результатами исследования И. И. Борзенковой [7].
Рис. 2.1.1. Широтное распределение сумм осадков.
1 — по данным Лема, 2 — по данным Борзенковой.
Согласование этих кривых подтверждает наличие закономерной связи между распределением атмосферных осадков и глобальными колебаниями средней температуры воздуха. Анализ данных об осадках в Северном полушарии (8300 станций и дождемерных постов) показал, что 1980-е и начало 1990-х годов были не только самыми теплыми, но и самыми влажными годами за весь период инструментальных наблюдений. Высокий уровень увлажнения обеспечивался в основном за счет районов, расположенных севернее 500 с. ш., в то время как в тропической зоне отмечалось заметное его уменьшение. Положительный тренд осадков в зоне 35 – 700 с. ш. оценивается равным 6 – 8% за 100 лет. Исследования последних лет показали, что в 80-х и 90-х годах статистически значимо увеличились ливневые осадки, что, по-видимому, связано с усилением внутримассовой конвекции в летнее время во внутриконтинентальных районах из-за повышения температуры воздуха (П.Я. Гройсман, устное сообщение). Определенные изменения в циркуляционном режиме, характерные для теплых эпох прошлого, также отмечаются и в последние 15–20 лет. В частности, максимум зональной циркуляции, обеспечивающий высокий уровень увлажнения в высоких широтах, с начала 80-х годов постепенно смещается в более северные широты. Такие изменения в климатическом режиме, произошедшие за последнее столетие, и особенно за последние 15 – 20 лет, свидетельствуют о фундаментальной перестройке глобальной климатической системы. Можно предположить, что в значительной степени эти изменения обусловлены антропогенными причинами, и прежде всего изменением концентрации парниковых газов.
1.2 Предполагаемые причины и факторы климатических изменений. Циклические колебания климата
Известно, что естественные колебания глобального климата определяются изменениями в приходе солнечной радиации на верхнюю границу атмосферы в результате колебания солнечной постоянной, колебания радиации из-за изменений астрономических параметров земной орбиты или из-за ослабления радиации стратосферным аэрозолем после крупных вулканических извержений взрывного типа. Одна из концепций, утверждающая зависимость современных климатических изменений от вулканической активности, была предложена Гемфрисом (1913, 1929 и др.).
Уже в работах Гемфриса было установлено, что среднее количество прямой солнечной радиации, приходящей к земной поверхности в безоблачных условиях, в различные годы может заметно изменяться. Эти изменения хорошо видны на кривых векового хода прямой радиации, построенных по материалам наблюдений на ряде актинометрических станций. Такие кривые показывают, что прямая радиация, заметно изменяясь от года к году, в среднем изменяется также и за более длительные периоды времени, порядка десятилетий. Представляет значительный интерес сопоставление векового хода температуры в северном полушарии с вековым ходом радиации, приходящей к земной поверхности. Для этой цели был обработан материал актинометрических наблюдений за 1880— 1965 гг. для группы станций Европы и Америки с наиболее длительными рядами наблюдений, расположенных в зоне 40—60° с. ш., и построена средняя для этих станций кривая векового хода прямой радиации при безоблачном небе (Будыко, Пивоварова, 1967; Пивоварова, 1968). На рис. 1.2.1 представлены сглаженные по 10-летнему скользящему периоду значения солнечной радиации для рассматриваемого интервала времени (кривая б). Как видно, солнечная радиация имела два максимума: один, кратковременный, в конце XIX в. и второй, более длительный, с наибольшими значениями радиации в 30-х годах XX в. Можно высказать два предположения о причинах изменений прямой радиации при безоблачном небе. Первое из них — связь этих изменений с колебаниями астрономической солнечной постоянной (светимости Солнца), второе — с колебаниями так называемой метеорологической солнечной постоянной, т. е. количества радиации, поступающей на верхнюю границу тропосферы, которое может изменяться при постоянной светимости Солнца из-за нестабильности прозрачности стратосферы. Первая гипотеза была предложена в нескольких работах, примером которых является исследование Босоласко и его соавторов (1964).