В настоящее время основные требования экологической безопасности жилых и общественных зданий определяются строительными нормами и правилами (СНиП) и гигиеническими нормами.
Переход к новому уровню качественного состояния различных типов зданий требует проведения анализа существующих инженерно-технических решений и степени их воздействия на экологическую безопасность внутренней среды. Такой анализ позволит определить наибольшую эффективность экологических мероприятий в помещениях при наименьших материальных и финансовых затратах.
Повсеместное применение в отечественной и зарубежной строительной практике полимеров и пластиков привело к опасности поступления вредных химических веществ в окружающую среду жилых и общественных зданий. Присутствуя в воздухе в относительно малых концентрациях, сразу эти вещества не вызывают заболеваний, но накапливаясь, влияют на здоровье и работоспособность человека, приводя к хроническим интоксикациям, мутациям, болезням центральной нервной системы, патологии тканей и крови.
По данным института гигиены им.Ф.Ф.Эрисмана распределение вредности (по уровню ПДК) в воздухе жилого помещения следующее:
- СО2 вентиляционного воздуха – 20.0 %;
- СО2, выдыхаемое человеком – 13.3 %;
- антропотоксины (летучие вредные вещества, возникающие в результате деятельности человека, от сооружения жилища и его отделки материалами с применением полимеров.
Воздушная среда в жилых зданиях должна отвечать таким гигиеническим требования, когда отсутствуют химические и органические загрязнения (тяжелые металлы, радон, аэрозоли и др.). Содержание СО не должно превышать 0,05 – 19,1%. Такое состояние воздушной среды может быть достигнуто при кубатуре воздуха на одного человека 25 – 30 куб.м (минимальный показатель).
Одним из загрязняющих источников в жилом здании является кухонная газовая плита. В процессе сгорания сетевого или баллонного газа образуются такие токсические вещества, как оксиды азота , серы , углерода. Наиболее опасными являются оксиды азота. В качестве примера можно привести следующий факт: предельно -допустимая концентрация оксидов азота в атмосферном воздухе населенных мест (среднесуточная) – 0,085 мг/куб.м. В процессе же эксплуатации газовой плиты концентрации оксидов азота могут превышать ПДК в 10 и более раз.
При содержании в воздухе оксидов азота 0,001% появляются легкие признаки отравления, при 0,005% – возможно серьезное отравление через 30 минут, при 0,015% – появляется опасность для жизни.
Исследованиями Государственного института прикладной экологии МПР России установлено, что качество воздушной среды закрытых помещений по химическому составу в значительной степени зависит от качества атмосферного воздуха. Поскольку различные типы зданий имеют постоянный воздухообмен с внешней средой, то отсутствует экологическая защита жителей от загрязнения атмосферного воздуха. Миграция органической и неорганической пыли, токсических веществ, содержащихся в воздухе городов, во внутреннюю среду помещений обусловлено их естественной и искусственной вентиляцией, и поэтому вещества, присутствующие в наружном воздухе, обнаруживаются в помещениях даже при подаче воздуха через системы кондиционирования.
Потребность в экономии тепловой энергии обусловила применение полимерных материалов в гражданском строительстве, которые далеко не всегда обладают экологической чистотой. В процессе эксплуатации полимерные теплоизоляционные материалы стареют в связи с протеканием реакции деструкции, вызванной разрывом основной молекулярной сети, что и приводит к разрушению утеплителя и выделению во внешнюю среду химически вредных веществ с токсическими свойствами.
Степень проникновения загрязнения внутрь зданий различна, однако концентрация ацетальдегида, ацетона, бензола, этилового спирта, толуола, метилэтилбензола, пропилбензола, этилацетата, фенола, ряда предельных углеводородов в воздушной среде помещений превышают, как правило, концентрации в атмосферном воздухе более чем в 10 раз[62].
Основные источники загрязнения воздушной среды жилых и общественных зданий можно разделить на четыре группы:
- вещества, поступающие извне с загрязненным атмосферным воздухом;
- продукты деструкции строительных и отделочных материалов;
- антропотоксины;
- продукты сгорания бытового газа и продукты жизнедеятельности человека.
Рассмотрим более подробно характеристики отдельных химических веществ, загрязняющих воздух жилых и общественных зданий в городах Западной Сибири (таблица 51).
Ф и з и ч е с к и е ф а к т о р ы экологической безопасности жилых и общественных зданий включают параметры микроклимата, вибрацию, акустику, инсоляцию, электромагнитные поля и радиационный фон.
Рассмотрим одну из наиболее значимых по мнению Всемирной организации здравоохранения (ВОЗ) проблему – воздействие электромагнитного излучения (ЭМИ) во внутренней среде помещений.
Загрязнение ЭМИ в настоящее время достигло таких величин, что данный фактор стал весьма ощутимым своим воздействием на биологические объекты. Между продолжительностью воздействия ЭМИ и состоянием здоровья населения имеется корреляционная зависимость, приводящая к снижению иммунитета организма, увеличению заболеваемости органов дыхания, болезней кожи, деградации сетчатки глаза, увеличении тяжести течения беременности и продолжительности патологических процессов[52].
Исследования последних лет свидетельствуют о причинной связи между ЭМИ и развитием злокачественных опухолей. Человек, живущий в городе, практически круглосуточно испытывает воздействие ЭМИ снаружи и внутри зданий, что характерно для промышленно развитых стран.
Сочетание ЭМИ с химическими загрязнениями и радиационными факторами на фоне недостаточно калорийного питания в условиях современной реальности для значительной части населения (пенсионеры, студенты, учащиеся) представляет собой реальную угрозу здоровью горожан в Западной Сибири.
Высокоразвитые страны мира разрабатывают и применяют национальные стандарты, регламентирующие внутри помещений уровни статического электрического поля (СЭП), электромагнитного поля низкой частоты (НЧ) и сверхвысокой частоты (СВЧ). Такие страны, как Швеция и Канада, имеют государственные стандарты для электромагнитных излучений очень низких частот (ОНЧ).
Широкое применение электризующих полимерных материалов в строительстве и при изготовлении мебели, других предметов домашнего обихода привели к увеличению выраженности статической электризации и статических электрических полей в окружающей среде. Доказано, что СЭП является биологически активным фактором среды.
Определенную экологическую опасность представляют бытовые электроприборы, работающие на промышленной частоте 50 Гц.
Если жилые и общественные здания находятся возле передающих радио- и телестанций, то внешнее ЭМИ будет накладываться на "бытовое" электромагнитное поле, существующее практически в каждой квартире, что создает высокие уровни напряженности биологически эффективного фактора. По мнению ряда специалистов, электромагнитное излучение катализирует злокачественные образования.
Таблица 51
Загрязнение воздуха жилых и общественных зданий
в городах Западной Сибири.
Название ингредиента | Реальная концентрация (мг/куб.м) | Превышение ПДК | Источник |
Формальдегид | 0,004 – 0,077 | до 8 раз | Новая мебель из древесно-стружечных плит Неполное сгорание газа в кухонных плитах Полимерные материалы |
Фенол | 0,0 – 0,360 | до 12 раз | Полимерные материалы |
Стирол | 0,0 – 0,032 | до 3 раз | Полистирольные тепло- изоляционные плиты, облицовочный пластик, декоративные изделия, влагостойкие обои и др. |
Бензол, этилбензол | до 7 раз | Строительные и отделочные материалы: линолеум, лаки, краски, мастики и неполное сгорание газа в кухонных плитах | |
Ксилол, толуол | до 0,5 | Строительные и отделочные материалы: линолеум, лаки, краски, мастики, клеи, растворители | |
Альдегиды и эфиры (в т.ч. этилацетат, ацетальдегид) | Строительные и отделочные материалы: линолеум, лаки, краски, мастики, клеи, растворители | ||
Аэрозоли тяжелых металлов | до 2,3 раз (свинец); до 3,2 раз (кадмий); до 1,1 раз (хром); до 1,3 раз (медь) | Наружный воздух | |
Домашняя пыль-адсорбент (ароматические углеводороды, альдегиды и др.) | в 1 г пыли: 6,9 – 25,2 мг органических химических веществ; 4,2 – 37,2 мг тяжелых металлов |
Одной из весьма реальных экологических опасностей на урбанизированных территориях является наличие в жилых и общественных зданиях радона (Rn) и его продуктов распада в воздушной среде помещений, что, по данным ВОЗ, является причиной около 20% всех раковых заболеваний легких у человека. Радоноопасными урбанизированными территориями в Западной Сибири являются города Новосибирск, Барнаул, Бийск. По мнению ряда специалистов, попадание радона в закрытые помещения зданий зависит от:
– геологических особенностей местности;
– содержания радона в почвенных газах;
– степени проницаемости почв для радона;
– климатических особенностей местности;
– конструктивных характеристик зданий.
Комплекс перечисленных выше факторов физического и химического воздействия на человека, возникающих под воздействием внешних природных и техногенных особенностей на урбанизированных территориях городов Западной Сибири, в сочетании с конструктивными и технологическими особенностями жилых и общественных зданий, образуют внутреннюю среду закрытых помещений, которая является зачастую экологически опасной средой для городских жителей. Экологизация градостроительной политики и промышленности строительных материалов, совершенствование архитектурно-планировочных решений – реальные пути создания безопасной и комфортной среды обитания человека. Отдельные показатели перечисленных методических подходов необходимо учитывать в структуре жилищного кадастра и в структуре кадастра городской недвижимости, которые могут формироваться на муниципальном уровне и внедряться в практику природопользования и охраны окружающей среды.