Смекни!
smekni.com

Сжатие данных (стр. 4 из 5)

потому что это число лежит в интервале [ 0.5, 1 ). Пересчет дает результат:

( 0.6 - 0.5 ) / 0.5 = 0.2

Второй буквой будет B, т.к. новая дробь лежит в интервале [ 0.125, 0.25 ).

Пересчет дает:

( 0.2 - 0.125 ) / 0.125 = 0.6.

Это значит, что 3-я буква есть D, и исходный текст при отсутствии информации о

его длине, будет повторяющейся строкой DBDBDB ...

Первоочередной проблемой здесь является высокая точность арифметики для

понимания и опеpиpования со сплошным битовым потоком, каковым выглядит сжатый

текст, рассматриваемый в качестве числа. Эта проблема была решена в 1979 году.

Эффективность сжатия методом статичного арифметического кодирования будет равна

H , только при использовании арифметики неограниченной точности. Но и

ограниченной точности большинства машин достаточно, чтобы позволять осуществлять

очень хорошее сжатие. Целых переменных длиной 16 битов, 32-битовых произведений

и делимых достаточно, чтобы результат адаптивного арифметического сжатия лежал в

нескольких процентах от предела и был едва ли не всегда немного лучше, чем у

оптимального адаптированного кода Хаффмана, предложенного Уитером.

Как и в случае кодов Хаффмана, статичные арифметические коды требуют двух

проходов или первоначального знания частот букв. Адаптированные арифметические

коды требуют эффективного алгоритма для поддержания и изменения информации о

бегущей и накапливаемой частотах по мере обработки букв. Простейший путь для

этого - завести счетчик для каждой буквы, увеличивающий свое значение на единицу

всякий раз, когда встречена сама эта буква или любая из следующих после нее в

алфавите. В соответствии с этим подходом, частота буквы есть разница между

числом ее появлений и числом появлений ее предшественников. Этот простой подход

может потребовать O(n) операций над буквой n-арного алфавита. В реализованном на

Си Уиттеном, Нейлом и Клири алгоритме сжатия арифметических данных, среднее

значение было улучшено посредством использования дисциплины move-to-front, что

сократило количество счетчиков, значения которых измененяются каждый раз, когда

обрабатывается буква.

Дальнейшее улучшение организации распределения накопленной частоты требует

коренного отхода от простых СД. Требования, которым должна отвечать эта СД лучше

изучить, если выразить ее через абстрактный тип данных со следующими пятью

операциями: initialize, update, findletter, findrange и maxrange. Операция

инициализации устанавливает частоту всех букв в 1, и любое не равное нулю

значение будет действовать до тех пор, пока алгоритм кодирования и

раскодирования используют одинаковые начальные частоты. Начальное значение

частоты, равное нулю, будет присваиваться символу в качестве пустого интервала,

т.о. предупреждая его от передачи или получения.

Операция update(c) увеличивает частоту буквы с. Функции findletter и findrange

обратны друг другу, и update может выполнять любое изменение порядка алфавита,

пока сохраняется эта обратная связь. В любой момент времени findletter ( f, c,

min, max ) будет возвращать букву c и связанный с нею накапливаемый частотный

интервал [ min, max ), где f [ min, max ). Обратная функция findrange( c, min,

max ) будет возвращать значения min и max для данной буквы c.

Функция maxrange возвращает сумму всех частот всех букв алфавита, она нужна

для перечисления накопленных частот в интервале [ 0, 1 ).

Применение расширения к арифметическим кодам.

Ключом к реализации СД, накапливающей значение частот и в худшем случае

требующей для каждой буквы менее, чем O(n) операций для n-буквенного алфавита,

является представление букв алфавита в качестве листьев дерева. Каждый лист

дерева имеет вес, равный частоте встречаемой буквы, вес каждого узла

представляет собой сумму весов его наследников. Рисунок 7 демонстрирует такое

дерево для 4-х-буквенного алфавита ( A, B, C, D ) с вероятностями ( 0.125,

0.125, 0.25, 0.5 ) и частотами ( 1, 1, 2, 4 ). Функция maxrange на таком дереве

вычисляется элементарно - она просто возвращает вес корня. Функции update и

findrange могут быть вычислены методом обхода дерева от листа к корню, а функция

findletter - от корня к листу.

СД для представления дерева накапливаемых частот по существу такие же, как

и рассмотренные ранее для представления дерева кодов префиксов, с добавлением

массива, хранящего частоты каждого узла.

const

maxchar = ... { maximum source character code };

succmax = maxchar + 1;

twicemax = 2 * maxchar + 1;

root = 1;

type

codetype = 0..maxchar { source character code range };

bit = 0..1;

upindex = 1..maxchar;

downindex = 1..twicemax;

var

up: array[downindex] of upindex;

freq: array[downindex] of integer;

left,right: array[upindex] of downindex;

Инициализация этой структуры включает в себя не только построение древовидной

СД, но и инициализацию частот каждого листа и узла следующим образом:

procedure initialize;

var

u: upindex;

d: downindex;

begin

for d := succmax to twicemax do freq[d] := 1;

for u := maxchar downto 1 do begin

left[u] := 2 * u;

right[u] := ( 2 * u ) + 1;

freq[u] := freq[left[u]] + freq[right[u]];

up[left[u]] := u;

up[right[u]] := u;

end;

end { initialize };

Для того, чтобы отыскать букву и соответствующий ей интервал накопленной

частоты, когда известна отдельная накопленная частота, необходимо обойти дерево

начиная с корня по направлению к букве, производя беглое вычисление интервала

частот, соответствующего текущей ветке дерева. Интервал, соответствующий корню,

есть [0, freq[root]], он должен содержать f. Если отдельный узел деpева i связан

с интервалом [a, b), где a - b = freq[i], то интервалами, связанными с двумя

поддеревьями будут интервалы [a, a+freq[left[i]] ) и [a+freq[left[i]], b). Они

не пересекаются, поэтому путь вниз по дереву будет таким, что f содержится в

подинтервале, связанном с каждым узлом на этом пути. Это показано в

следующей процедуре:

procedure findsymbol( f: integer; var c: codetype; var a, b: integer );

var

i: downindex;

t: integer;

begin

a := 0;

i := root;

b := freq[root];

repeat

t := a + freq[left[i]];

if f < t then begin { повоpот налево }

i := left[i];

b := t;

end else begin { повоpот напpаво }

i := right[i];

a := t;

end;

until i > maxchar;

c := i - succmax;

end { findsymbol };

Чтобы найти связанный с буквой частотный интервал, процесс, описанный в

findsymbol должен происходить в обратном направлении. Первоначально единственной

информацией, известной о букве узла дерева i, есть частота этой буквы freq[i].

Это означает, что интервал [0, freq[i]) будет соответствовать какойлибо букве,

если весь алфавит состоит из нее одной. Дано: интервал [a, b) связан с некоторым

листом поддерева с корнем в узле i, тогда может быть вычислен интервал,

связанный с этим листом в поддереве up[i]. Если i - левый наследник, то это

просто интервал [ a, b ), если правый, то - [ a + d, b + d ), где

d = freq[up[i]] - freq[i], или, что одно и то же: d = freq[left[up[i]]].

procedure findrange( c: codetype; var a, b: integer );

var

i: downindex;

d: integer;

begin

a := 0;

i := c + succmax;

b := freq[i];

repeat

if right[up[i]] = i then begin { i is right child }

d := freq[left[up[i]]];

a := a + d;

b := b + d;

end;

i := up[i];

until i = root;

end { findrange };

Если проблема сохранения сбалансированности в дереве накапливаемых частот не

стоит, то функция update будет тривиальной, состоящей из обхода дерева от

изменяемого листа до корня, сопровождающегося увеличением значения каждого

встреченного узла на единицу. В противном случае время, затраченное на операции

findletter, findrange и update при первоначально сбалансированном дереве будет в

сpеднем O(log n) на одну букву для n-буквенного алфавита. Это лучше, чем худший

вариант O(n), достигаемый посредством применения линейной СД (с организацией

move-to-front или без нее ), но может быть улучшено еще.

Заметьте, что каждая буква, сжатая арифметическим методом требует обращения к

процедуре findrange, за которым следует вызов update. Т.о. путь от корня к букве

в дереве накапливаемых частот будет проделан дважды во время сжатия и дважды во

время развертывания. Минимизация общего времени сжатия или развертывания

сообщения требует минимизации общей длины всех путей, пройденных в дереве. Если

частоты букв известны заранее, то статичное дерево Хаффмана будет минимизировать

длину этого маршрута! Длина пути для сообщения S будет ограничена значением

2(Hs(S) + C(S)), где C(S) - количество букв в строке, а множитель 2 отражает тот

факт, что каждый маршрут проходится дважды.

Нет смысла в использовании дерева накапливаемых частот, если все вероятности

известны заранее, что позволяет применять простую поисковую таблицу для

нахождения вероятностей. Если они неизвестны, то оптимальный Л-алгоритм Уиттера

может быть легко модифицирован для управления деревом накапливаемых частот,

причем длина пути обхода дерева, имеющая место во время сжатия или развертывания

не будет превышать значение 2( H (S) + C(S) ). Аналогично можно использовать

алгоритм расширяющегося префикса, дающего ограничение O(H (S)) для длины пути,

но при большем постоянном множителе. Ранее пpиведенные опытные результаты

показывают, что эти постоянные множители более чем компенсируются простотой

алгоритма расширяющегося префикса.

В соответствии с этим алгоритмом операции расширения не нужно затрагивать

информации внутренних узлов дерева. Когда расширение выполняется как часть

операции update, каждая операция полувpащения должна предохранять инвариацию

регулирования весов узлов дерева. На рисунке 8 дерево полувpащается вокруг А,

имея результатом то, что вес Х сокращается весом А и наращивается весом С. В то

же время, поскольку это есть часть повторного пути от А к корню, вес А

увеличивается. Итоговый код будет:

procedure update( c: codetype );

var

c, d: upindex { пара полувpащаемых узлов };

a, b: downindex { наследники полувpащемых узлов };

begin

a := c + succmax;

repeat { вверх по дереву, чередуя и наращивая }

c := up[a];

if c # root then begin { оставшаяся пара }

d := up[c];

{ обмен между наследниками пары }

b := left[d];

if c = b then begin b := right[d];

right[d] := a;

end else left[d] := a;

if a = left[c] then left[c] := b

else right[c] := b;

up[a] := d;

up[b] := c;

freq[c] := ( freq[c] - freq[a] ) + freq[b];

freq[a] := freq[a] + 1;