Содержание:
Введение.....................................1
Механический подход..........................2
Электронный подход...........................3
Кибернетический подход.......................6
Нейронный подход.............................8
Появление перцептрона.......................10
Искусственный интеллект и
теоретические проблемы психологии...........12
С конца 40-х годов ученые все большего числа университетских и
промышленных исследовательских лабораторий устремились к дерзкой цели:
построение компьютеров, действующих таким образом, что по результатам
работы их невозможно было бы отличить от человеческого разума.
Терпеливо продвигаясь вперед в своем нелегком труде, исследовате-
ли, работающие в области искусственного интеллекта (ИИ), обнаружили,
что вступили в схватку с весьма запутанными проблемами, далеко выходя-
щими за пределы традиционной информатики. Оказалось, что прежде всего
необходимо понять механизмы процесса обучения, природу языка и чувс-
твенного восприятия. Выяснилось, что для создания машин, имитирующих
работу человеческого мозга, требуется разобраться в том, как действуют
миллиарды его взаимосвязанных нейронов. И тогда многие исследователи
пришли к выводу, что пожалуй самая трудная проблема, стоящая перед
современной наукой - познание процессов функционирования человеческого
разума, а не просто имитация его работы. Что непосредственно затраги-
вало фундаментальные теоретические проблемы психологической науки. В
самом деле, ученым трудно даже прийти к единой точке зрения относи-
тельно самого предмета их исследований - интеллекта. Здесь, как в
притче о слепцах, пытавшихся описывать слона, пытается придерживаться
своего заветного определения.
Некоторые считают, что интеллект - умение решать сложные задачи;
другие рассматривают его как способность к обучению, обобщению и ана-
логиям; третьи - как возможность взаимодействия с внешним миром путем
общения, восприятия и осознания воспринятого. Тем не менее многие исс-
ледователи ИИ склонны принять тест машинного интеллекта, предложенный
в начале 50-х годов выдающимся английским математиком и специалистом
по вычислительной технике Аланом Тьюрингом. Компьютер можно считать
разумным,- утверждал Тьюринг,- если он способен заставить нас пове-
рить, что мы имеем дело не с машиной, а с человеком.
Механический подход.
Идея создания мыслящих машин "человеческого типа", которые каза-
лось бы думают, двигаются, слышат , говорят, и вообще ведут себя как
живые люди уходит корнями в глубокое прошлое. Еще древние египтяне и
римляне испытывали благоговейный ужас перед культовыми статуями, кото-
рые жестикулировали и изрекали пророчества (разумеется не без помощи
жрецов). Средневековые летописи полны рассказов об автоматах, способ-
ных ходить и двигаться почти также как их хозяева - люди. В средние
века и даже позднее ходили слухи о том, что у кого-то из мудрецов есть
гомункулы (маленькие искусственные человечки) - настоящие живые, спо-
собные чувствовать существа. Выдающийся швейцарский врач и естествоис-
пытатель XVI в Теофраст Бомбаст фон Гогенгейм (более известный под
именем Парацельс) оставил руководство по изготовлению гомункула, в ко-
тором описывалась странная процедура, начинавшаяся с закапывания в ло-
шадиный навоз герметично закупоренной человеческой спермы. "Мы будем
как боги, - провозглашал Парацельс. - Мы повторим величайшее из чудес
господних - сотворение человека!"(4)
В XVIII в. благодаря развитию техники, особенно разработке часо-
вых механизмов, интерес к подобным изобретениям возрос, хотя результа-
ты были гораздо более "игрушечными", чем это хотелось бы Парацельсу. В
1736 г. французский изобретатель Жак де Вокансон изготовил механичес-
кого флейтиста в человеческий рост, который исполнял двенадцать мело-
дий, перебирая пальцами отверстия и дуя в мундштук, как настоящий му-
зыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор,
служивший при дворе Франциска I, сконструировал серию машин, которые
умели держать перо и могли писать довольно длинные тексты. Другой мас-
тер, Пьер Жак-Дроз из Швейцарии, построил пару изумительных по слож-
ности механических кукол размером с ребенка: мальчика, пишущего письма
и девушку, играющую на клавесине.
Успехи механики XIX в. стимулировали еще более честолюбивые за-
мыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж заду-
мал, правда, так и не завершив, сложный цифровой калькулятор, который
он назвал Аналитической машиной; как утверждал Бэббидж, его машина в
принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 г., ди-
ректор одного из испанских технических институтов Леонардо Тор-
рес-и-Кеведо действительно из готовил электромеханическое устройство,
способное разыгрывать простейшие шахматные эндшпили почти также хоро-
шо, как и человек.
Электронный подход.
Однако только после второй мировой войны появились устройства,
казалось бы, подходящие для достижения заветной цели - моделирования
разумного поведения; это были электронные цифровые вычислительные ма-
шины. "Электронный мозг", как тогда восторженно называли компьютер,
поразил в 1952 г. телезрителей США, точно предсказав результаты прези-
дентских выборов за несколько часов до получения окончательных данных.
Этот "подвиг" компьютера лишь подтвердил вывод, к которому в то время
пришли многие ученые: наступит тот день, когда автоматические вычисли-
тели, столь быстро, неутомимо и безошибочно выполняющие автоматические
действия, смогут имитировать невычислительные процессы, свойственные
человеческому мышлению, в том числе восприятие и обучение, распознава-
ние образов, понимание повседневной речи и письма, принятие решений в
неопределенных ситуациях, когда известны не все факты. Таким образом
"заочно" формулировался своего рода "социальный заказ" для психологии,
стимулируя различные отрасли науки.
Многие изобретатели компьютеров и первые программисты развлека-
лись составляя программы для отнюдь не технических занятий, как сочи-
нение музыки, решение головоломок и игры, на первом месте здесь оказа-
лись шашки и шахматы. Некоторые романтически настроенные программисты
даже заставляли свои машины писать любовные письма.
К концу 50-х годов все эти увлечения выделились в новую более или
менее самостоятельную ветвь информатики, получившую название "искусс-
твенный интеллект". Исследования в области ИИ, первоначально сосредо-
точенные в нескольких университетских центрах США - Массачусетском
технологическом институте, Технологическом институте Карнеги в Питт-
сбурге, Станфордском университете, - ныне ведутся во многих других
университетах и корпорациях США и других стран. В общем исследователей
ИИ, работающих над созданием мыслящих машин, можно разделить на две
группы. Одних интересует чистая наука и для них компьютер - лишь инс-
трумент, обеспечивающий возможность экспериментальной проверки теорий
процессов мышления. Интересы другой группы лежат в области техники:
они стремятся расширить сферу применения компьютеров и облегчить поль-
зование ими. Многие представители второй группы мало заботятся о выяс-
нении механизма мышления - они полагают, что для их работы это едва ли
более полезно, чем изучение полета птиц и самолетостроения.
В настоящее время, однако, обнаружилось, что как научные так и
технические поиски столкнулись с несоизмеримо более серьезными трудно-
стями, чем представлялось первым энтузиастам. На первых порах многие
пионеры ИИ верили, что через какой-нибудь десяток лет машины машины
обретут высочайшие человеческие таланты. Предполагалось, что преодолев
период "электронного детства" и обучившись в библиотеках всего мира,
хитроумные компьютеры, благодаря быстродействию точности и безотказной
памяти постепенно превзойдут своих создателей-людей. Сейчас мало кто
говорит об этом, а если и говорит, то отнюдь не считает, что подобные
чудеса не за горами.
На протяжении всей своей короткой истории исследователи в области
ИИ всегда находились на переднем крае информатики. Многие ныне обычные
разработки, в том числе усовершенствованные системы программирования,
тектовые редакторы и программы распознавания образов, в значительной
мере рассматриваются на работах по ИИ. Короче говоря, теории, новые
идеи, и разработки ИИ неизменно привлекают внимание тех, кто стремится
расширить области применения и возможности компьютеров, сделать их бо-
лее "дружелюбными" то есть более похожими на разумных помощников и ак-
тивных советчиков, чем те педантичные и туповатые электронные рабы,
какими они всегда были.
Несмотря на многообещающие перспективы, ни одну из разработанных
до сих пор программ ИИ нельзя назвать "разумной" в обычном понимании
этого слова. Это объясняется тем, что все они узко специализированы;
самые сложные экспертные системы по своим возможностям скорее напоми-
нают дрессированных или механических кукол, нежели человека с его гиб-
ким умом и широким кругозором. Даже среди исследователей ИИ теперь
многие сомневаются, что большинство подобных изделий принесет сущест-
венную пользу. Немало критиков ИИ считают, что такого рода ограничения
вообще непреодолимы.
К числу таких скептиков относится и Хьюберт Дрейфус, профессор
философии Калифорнийского университета в Беркли. С его точки зрения,
истинный разум невозможно отделить от его человеческой основы, заклю-
ченной в человеческом организме. "Цифровой компьютер - не человек, -