Смекни!
smekni.com

Основы САПР (системы автоматизированного проектирования) (стр. 1 из 3)

Содержание

1. Обзор САПР

2. Определение CAD, CAM и CAE

2.1 Автоматизированное проектирование (CAD)

2.2 Автоматизированное производство (CAM)

2.3 Автоматизированное конструирование (CAE)

Список используемой литературы


1. Обзор САПР

Современные предприятия не смогут выжить во всемирной конкуренции, если не будут выпускать новые продукты лучшего качества (quality, Q), более низкой стоимости (cost, С) и за меньшее время (delivery, D). Поэтому они стремятся использовать oгpoмные возможности памяти компьютеров, их высокое быстродействие и возможности удобного графического интерфейса для того, чтобы автоматизировать и связать друг с другом задачи проектирования и производства, которые раньше были весьма утомительными и совершенно не связанными друг с другом. Таким образом сокращается время и стоимость разработки и выпуска продукта. Для этой цели используются технологии автоматизированного проектирования (computer– aided design– CAD), автоматизированного производства (computer – aided mаnufасturing – САМ) и автоматизированной разработки или конструирования (соmрutеr аidеd engineering – СAЕ). Чтобы понять значение систем САD/СAМ/СAЕ, мы должны изучить различные задачи и операции, которые приходится решать и выполнять в процесс е разработки и производства продукта. Все эти задачи, взятые вместе, называются жизненным циклом продукта (product cycle). Пример жизненного цикла продукта, описанного Зейдом, с незначительными усовершенствованиями приведен на рис. 1.

Прямоугольники, нарисованные сплошными линиями, представляют два главных процесса, составляющих жизненный цикл продукта: процесс разработки и процесс производства. Процесс разработки начинается с запросов потребителей, которые обслуживаются отделом маркетинга, и заканчивается полным описанием продукта, обычно выполняемым в форме рисунка. Процесс производства начинается с технических требований и заканчивается поставкой готовых изделий.

Операции, относящиеся к процессу разработки, можно разделить на аналитические и синтетические. Как следует из рис. 1, первичные операции разработки, такие как определение необходимости разработки, формулирование технических требований, анализ осуществимости и сбор важной информации, а также концептуализация разработки, относятся к подпроцессу синтеза. Результатом подпроцесса синтеза является концептуальный проект предполагаемого продукта в форме эскиза или топологического чертежа, отражающего связи различных компонентов продукта. В этой части цикла делаются основные финансовые вложения, необходимые для реализации идеи продукта, а также определяется eгo функциональность. Большая часть информации, порождаемой и обрабатываемой в рамках подпроцесса синтеза, является качественной, а следовательно, Heудобной для компьютерной обработки.

Рис. 1. Жизненный цикл продукта

Готовый концептуальный проект анализируется и оптимизируется это уже под процесс анализа. Прежде всего, вырабатывается аналитическая модель, поскольку анализируется именно модель, а не сам проект. Несмотря на быстрый рост количества и качества компьютеров, используемых в конструировании, в обозримом будущем отказаться от использования абстракции аналитической модели мы не сможем. Аналитическая модель получается, если из проекта yдaлить маловажные детали, редуцировать размерности и учесть имеющуюся симметрию. Редукция размерностей, например, подразумевает замену тонкого листа из какого-либо материала на эквивалентную плоскость с атрибутом толщины или длинного и тонкого участка на линию с определенными параметрами, xapaктеризующими поперечное сечение. Симметричность геометрии тела и нагрузки, приложенной к нему, позволяет рассматривать в модели лишь часть этого тела.

Типичные примеры анализа: анализ напряжений, позволяющий проверить прочность конструкции, контроль столкновений, позволяющий обнаружить возможность столкновений движущихся частей, составляющих механизм, а также кинематический анализ, показывающий, что проектируемое устройство будет совершать ожидаемые движения. Качество результатов, которые могут быть получены в результате анализа, непосредственно связано с качеством выбранной аналитической модели, которым оно ограничивается.

После завершения проектирования и выбора оптимальных параметров начинается этап оценки проекта. Для этой цели могут изготавливаться прототипы.

В конструировании прототипов все большую популярность приобретает новая технология, названная быстрым прототипированием (rapid prototyping). Эта тexнология позволяет конструировать прототип снизу вверх, то есть непосредственно из проекта, поскольку фактически требует только лишь данных о поперечном сечении конструкции. Если оценка проекта на основании прототипа показывает, что проект не удовлетворяет требованиям, описанный выше процесс разработки повторяется снова. Если же результат оценки проекта оказывается удовлетворительным, начинается подготовка проектной документации. К ней относятся чертежи, отчеты и списки материалов. Чертежи обычно копируются, а копии передаются на производство.

Как видно по рис. 1, процесс производства начинается с планирования, которое выполняется на основании полученных на этапе проектирования чертежей, а заканчивается готовым продуктом. технологическая подготовка производства – это операция, устанавливающая список технологических процессов по изготовлению продукта и задающая их Параметры. Одновременно выбирается оборудование, на котором будут производиться технологические операции, такие как получение детали нужной формы из заготовки. В результате подготовки производства составляются план выпуска. Списки материалов и программы для оборудования. На этом же этапе обрабатываются прочие специфические требования, в частности рассматриваются конструкции зажимов и креплений. Подготовка занимает в процессе производства примерно такое же место, как подпроцесс синтеза в процессе проектирования, требуя значительного человеческого опыта и принятия качественных решений. Такая характеристика подразумевает сложность компьютеризации данного этапа. После завершения технологической подготовки начинается выпуск готового продукта и его проверка на соответствие требованиям. Детали, успешно проходящие контроль качества, собираются вместе, проходят тестирование функциональности, упаковываются, маркируются и отгружаются заказчикам.

Выше мы описали типичный жизненный цикл продукта. Посмотрим теперь, каким образом на этапах этого цикла могут быть применены технологии CAD, САМ и САЕ. Как уже говорилось, компьютеры не могут широко использоваться в подпроцессе синтеза, поскольку они не обладают способностью хорошо обрабатывать качественную информацию. Однако даже на этом этапе разработчик может, например, при помощи коммерческих баз данных успешно собирать важную для анализа осуществимости информацию, а также пользоваться данными из каталогов.

Непросто представить себе использование компьютера и в процессе концептуализации проекта, потому что компьютер пока еще не стал мощным средством для интеллектуального творчества. На этом этапе компьютер может сделать свой вклад, обеспечивая эффективность создания различных концептуальных проектов. Полезными могут оказаться средства параметрического и геометрического моделирования, а также макропрограммы в системах автоматизированной разработки чертежей (computer– аidеd drafting). Все это типичные примеры систем САО. Система геометрического моделирования (geometric modeling system) это трёхмерный эквивалент системы автоматизированной разработки чертежей, то есть программный пакет, работающий с трехмерными, а не с плоскими объектами.

В аналитической фазе проектирования ценность компьютеров проявляется по-настоящему. Программных пакетов для анализа напряжений, контроля столкновений и кинематического анализа существует столько, что приводить какие-либо названия смысла не имеет. Эти программные пакеты относятся к средствам автоматизированного конструирования (САЕ). Главная проблема, связанная с их использованием, заключается в необходимости формирования аналитической модели. Проблемы не существовало бы вовсе, если бы аналитическая модель автоматически выводилась из концептуального проекта. Однако, как уже отмечалось, аналитическая модель не идентична концептуальному проекту она выводится из него путем исключения несущественных деталей и редукции размерностей. Необходимый уровень абстракции зависит от типа анализа и желаемой точности решения. Следовательно, автоматизировать процесс абстрагирования достаточно сложно, поэтому аналитическую модель часто создают отдельно.

Обычно абстрактная модель проекта создается в системе разработки рабочих

чертежей или в системе геометрического моделирования, а иногда с помощью встроенных средств аналитического пакета. Аналитические пакеты обычно тpeбуют, чтобы исследуемая структура была представлена в виде объединения связанных сеток, разделяющих объект на отдельные участки, удобные для компьютерной обработки. Если аналитический пакет может генерировать сетку автоматически, человеку остается задать только границы абстрактного объекта. В противном случае сетка также создается пользователем либо в интерактивном режиме, либо автоматически, но в другой программе. Процесс создания сетки называется моделированием методом конечных элементов (finite element modeling). Моделирование этим методом включает в себя также задание граничных условий и внешних нагрузок.

Подпроцесс анализа может выполняться в цикле оптимизации проекта по каким-либо параметрам. Разработано множество алгоритмов поиска оптимальных решений, а на их основе построены коммерчески доступные программы. Процедура оптимизации может считаться компонентом системы автоматизированного проектирования, но более естественно рассматривать эту процедуру отдельно.