Смекни!
smekni.com

Администрирование локальных сетей (стр. 2 из 39)

Второй из важнейших функций ядра является обработка исключительных ситуаций возникающих в результате работы операционной системы и представляющим собой програмные прерывания. К последним относятся ошибки защиты (на пример попытка прикладной программы получить доступ к портам ввода-вывода или чужой области памяти), ошибки в работе оборудования, а также системные события возникающие при нормальной работе операционной системы. Некоторые из исключительных ситуаций приводят к аварийному завершению системы (ошибки оборудования или исключительная ситуация возникшая во время обработки исключительной ситуации), некоторые к аварийному завершению пользовательской программы при этом возможен сброс на диск в файл образа процесса вызвавшего исключительную ситуацию c целью дальнейшего анализа отладчиком, а некоторые просто жизненно необходимы для нормального функционирования операционной системы (одна из таких исключительных ситуаций будет рассмотрена ниже).

Подсистема управления процессами.

Запущенная на выполнение программа порождает в системе один или больше процессов. Подсистема управления процессами отвечает за создание и уничтожение процессов, распределения ресурсом между процессами, синхронизацю и межпроцессное взаимодействие. Так как в данный момент времени на одном процессоре может выполняться лишь одна задача ядро операционной системы в зависимости от приоритета задачи выделяет ей определенный квант процессорного времени по истечению которого происходит переключение на следующую задачу. При этом исключается возможность захвата всех ресурсов процессора одной задачей и создается эффект параллельного выполнения нескольких задач.

Подсистема управления памятью.

Подсистема управления памятью управляет выделением, размещением и освобождением памяти для прикладных задач. Прикладные программы никогда не используют физическую память напрямую, т.к. все современные операционные системы реализуют так называемую виртуальную память объем которой может превышать объем физической памяти. При этом задействуется механизмы страничной адресации памяти в которых все виртуальное адресное пространство разделяется на небольшие блоки – страницы. Размер страницы варьируется в зависимости от архитектуры, для архитектуры HP PA-RISC это 2К, для Intel это 4K. Каждая страница имеет специальные атрибуты которые определяют права доступа к ней, факт присутствия в физической памяти, частоту обращений и.т.п. Преобразование из виртуального адреса в физический осуществляется аппаратно. Данная схема адресации дает ряд неоспоримых преимуществ которые используются всеми современными операционными системами. А именно: возможность экономии физической памяти путем совместного использования одних и тех же страниц виртуальной памяти разными процессами, реализация разделяемой памяти, а также возможность использования вторичных устройств в качестве устройств памяти что позволяет задачам задействовать виртуальной памяти больше чем есть реально физической памяти в системе. Реализуется это следующим образом: в случае нехватки физической памяти, ядро сбрасывает на внешний носитель (как правило диск) страницы к которым наиболее долго не было обращений, а так же при обращении к странице которой реально нет в физической памяти процессор генерирует исключительную ситуацию обработчик которой загружает страницу обратно с внешнего носителя в физическую память. Этот процесс носит название пейджинг или свопинг.

Файловая подсистема.

Файловая подсистема ядра предоставляет унифицированный интерфейс для доступа к данным находящимися на дисках и других внешних устройствах. Она обеспечивает контроль прав доступа к файлам со стороны прользователя т.к. каждый файл имеет атрибуты доступа определяющие права доступа к нему со стороны определенного прользователя или групп пользователей.

Подсистема ввода-вывода.

Подсистема ввода-вывода обслуживает запросы файловой подсистемы и подсистемы управления процессами для доступа к периферийным устройствам (сетевые адаптеры, диски, терминалы …). Также она обеспечивает буферизацию и кеширование данных и взаимодействует с драйверами устройств – специальными модулями ядра непосредственно работающими с внешними устройствами.

2. Шеллы и основные команды HP-UX.

2.1.1 Общее знакомство с шелами

2.1.2 Смена шела

2.2.1 Bourne Shell

2.2.1.1 Основные возможности Shell.

2.2.1.2 Shell скрипты

2.2.1.3 Основы программирования на языке shell

2.2.1.4 Некоторые специальные команды

Общее знакомство с шелами

Шелл это интерфейс между операционной системой и пользователем. Шелл интерпретирует пользовательский ввод и дает указания операционной системе выполнить те или иные действия. Шелл можно также рассматривать как язык программирования.

Bourne Shell. Это самый старейший из шелов который был написан Стэфаном Борном в Лаборатории Беэлла. Этот шелл является шелом по умолчанию для HP-UX пользователей и долгое время был стандартом де факто.

Bourne Shell не имеет в своем арсенале ни интерактивных возможностей ни сложных программных конструкций в отличии от С и Korn шеллов.

C Shell. Этот шел был разработан Биллом Джоем в Калифорнийском Университете Беркли. Его синтаксис имеет сходство с языком программирования С. Он также имеет интерактивный интерфейс например историю команд и раскрытие имен файлов.

Korn Shell. Он является относительно новым шелом разработанным Девидом Корном в Лаборатории Бэлла и является вверх совместимым с большинством возможностей Bourne Shell. Так же как и С shell он имеет интерактивные возможности, но выполняется быстрее имеет расширенные возможности редактирования командной строки.

POSIX shell. Этот шелл базируется на стандарте определенном в Portable Operation System Interface (POSIX) – IEEE P1003.2. Этот стандарт был разработан для прикладных и системных программистов. Он фактически определяет стандарт на интерфейс операционной системы. Большинство возможностей POSIX Shell очень сильно схожи с аналогичными возможностями Korn Shell-a. Мы будем рассматривать оба этих шела едино, указывая лишь небольшие различия между ними. POSIX Shell имеет тоже имя что и Bourne Shell поэтому он помещен в /usr/bin/posix директорию в отличии от Bourne Shell, который находится в директории /usr/bin.

Key Shell. Это оболочка для Kourn Shell-a разработанная фирмой Hewlett-Packard. Она позволяет использовать меню и онлайн помощь помогая в построении команд и выполнению ряда часто встречаемых задач, таких как просмотр, редактирование и печать файлов, просмотр содержимого директории и.т.п. Построена она таким образом что пользователь может сам в дальнейшем

расширять ее возможности.

Bash. Название этого шела расшифровывается как Bourne Again Shell. Он бы разработан консорциумом Free Software Foundation и несмотря на то что по умолчанию он отсутствует в стандартной поставке HP-UX 10.20, в следствии своих мощных функциональных возможностей он пользуется огромной популярностью среди пользователей и администраторов HP-UX. Его интерпретатор команд совместим с Bourne Shell. Также он вместил в себе полезные возможности Korn C шеллов. Он разрабатывался в сооответствии со спецификациями IEEE POSIX Shell and Tools specification (IEEE Working Group 1003.2).

2.1.2 Смена шела

Для того чтобы определить Ваш системный шелл достаточно сразу после логина выполнить команду:

echo $SHELL

она показывает содержимое переменной SHELL в которую система прописывает Ваш шелл установленный по умолчанию. Для временной смены шела достаточно выполнить запуск желаемого шела в текущем:

$ ksh запуск Kourne Shell

$ ps печать списка процессов

PID TTY TIME COMMAND

12320 pts/2 0:00 sh Bourne shell

12322 pts/2 0:00 ksh Korn Shell

12323 pts/2 0:00 ps

$ exit выход из Korn Shell-a

Для постоянной смены шела устанавливаемого системой после входа (login shell) необходимо выполнить команду:

chsh <ваш_логин> <полное_имя_шела>

Замечание: список шелов доступных в системе для пользователей находится в файле /etc/shells

Bourne Shell.

2.2.1.1 Основные возможности Shell.

Запуск шелла и выход из шелла

Для запуска Bourne Shell достаточно ввести sh в текущем шеле. Выход из шела возможен либо по команде exit либо введя в терминале символ коца файла Ctrl-D.

Последовательное выполнение команд.

Несколько команд можно последовательно выполнять разграничивая точкой с запятой. Например, фрагмент

$ who

$ ps –ef

$ ls –l

и

$ who; ps –ef; ls -l

дадут полностью одинаковый результат.

Фоновое выполнение.

Запуск программы в фоновом режиме (без блокировки текущего шела) достигается добавлением в конец команды знака &

Перенаправление ввода-вывода.

Каждая запущенная программа имеет три ассоциированных канала: стандартный ввод, стандартный вывод и стандартный канал диагностики ошибок. По умолчанию стандартный ввод закреплен за клавиатурой а стандартный вывод и канал ошибок закреплены за монитором. Однако шелл позволяет связать эти каналы с файлами абсолютно прозрачно для выполняемой программмы, т.к. изменения вывода и ввода осуществляются на системном уровне. Примеры перенаправлений ввода-вывода:

Символ Функция Пример
< Перенаправление ввода из файла program < in_file
> Перенаправление вывода в файл program > out_file
>> Перенаправление вывода в файл с добавлением Program >> out_file

Пайпы. Две или более программ могут быть объединены таким образом что результат одной программы попадет на вход другой. При этом данные от одной программы к другой следуют через програмный канал, например: