Итак, мы получили следующий оптимальный план распределения средств между двумя предприятиями по годам:
Предприятие | 1-й год | 2-й год | 3-й год |
I | 350 | 200 | 24 |
II | 50 | 20 | 100 |
При этом может быть получен максимальный доход, равный Zmax=99,l. Прямой подсчет дохода по табл. 2 для найденного оптимального управления дает 97,2. Расхождение в результатах на 1,9 (около 2%) объясняется ошибкой линейной интерполяции.
Мы рассмотрели несколько вариантов задачи оптимального распределения ресурсов. Существуют другие варианты этой задачи, особенности которых учитываются соответствующей динамической моделью.
При постановке задачи оптимального распределения ресурсов мы предполагали, что доход на каждом шаге от всех предприятий и максимальный доход
, начиная с k-го шага до конца планового периода, зависели только от состояния системы к k-му шагу и от управления на этом шаге, но не зависели от того, каким образом распределялись средства между предприятиями на предыдущих шагах. Однако во многих задачах оптимального распределения средств доход, полученный на k-м шаге, может оказаться зависимым и от того, какие средства и в каком количестве выделялись каждому из предприятий на предыдущих шагах, т. е. от предыстории процесса.Таким образом, нарушается одно из условий, предъявляемых к задачам оптимизации, для того чтобы их можно было описать моделью ДП. Чтобы учесть предысторию процесса распределения ресурсов, можно увеличить число параметров состояния на каждом шаге, искусственно включив в число фазовых координат все управляющие параметры: предшествующих шагов, которые определяют последействие. Если число таких параметров велико, то схема ДП усложняется настолько, что становится практически неприменимой. В случае если размерность искусственного фазового пространства не превышает 3-4, то задачу можно решить вручную или (для большого числа шагов n) на машине.
Рассмотрим модель задачи оптимального распределения ресурсов с последействием, аналогичную задаче 2.
Задача 5. Начальные средства
распределяются между двумя предприятиями в течение n лет. Доход, полученный в конце k-го года от предприятий I и II, зависит от средств и , выделенных соответственно в предприятия I и II в k-м году, и от суммы всех вложенных в предприятия I и II средств соответственно за предыдущие k—1 лет. От этих же факторов зависит и величина средств, которые возвращаются в конце каждого года и перераспределяются в очередном плановом периоде. Новые средства не поступают, доход в производство не вкладывается.Требуется найти оптимальный способ распределения ресурсов между предприятиями I и II на n лет.
Обозначим через
, функции дохода, а через и — функции возврата средств для предприятии I и II соответственно.Состояние системы
в конце k-го шага удовлетворяет уравнению , (2.11)а доход, полученный на k-м шаге от двух предприятий, равен
. (2.12)Величины (2.11) и (2.12) зависят не только от управления
на k-м шаге, но и от всех управлении на предшествующих шагах (процесс распределения ресурсов обладает последействием).Введем в рассмотрение две новые фазовые координаты:
, , (2.13)полагая
. Состояние системы к началу k-го шага характеризуется тремя параметрами: , , . Так как все наличные средства в k-м году полностью распределяются между предприятиями I и II, то .Уравнение состояния имеет вид
(2.14)а доход на k-м шаге равен
Суммарный доход за n лет составляет
. (2.16)Требуется найти неотрицательные переменные
, обращающие в максимум функцию (2.16) и удовлетворяющие уравнениям (2.14) при начальных условиях , , .Обозначим через
условный максимальный доход, полученный за n—k+1 шагов, начиная с k-го до n-го включительно, при оптимальном распределении средств на этих шагах.Функциональные уравнения (1.5) для
имеют вид ; . (2.17)Решая последовательно уравнения (2.17) для
, получим, как и выше, две последовательности значений и . Далее при начальных условиях , , , учитывая уравнение состояния (2.14), по цепочке получим оптимальное управление и :