Смекни!
smekni.com

Быстрое преобразование Фурье (стр. 2 из 7)

В вырожденном случае, когда слагаемое всего одно (N = 1) формула (1) упрощается до:

,

Поскольку в данном случае k может быть равно только 0, то X{1}0 = x{1}0, то есть, ДПФ над одним числом дает это же самое число.

Для N = 2 по теореме 4 получим:

Для N = 4 по теореме 4 получим:

Отсюда видно, что если элементы исходной последовательности были действительными, то при увеличении N элементы ДПФ становятся комплексными.

Для N = 8 по теореме 4 получим:

Обратите внимание, что на предыдущем шаге мы использовали степени W4, а на этом - степени W8. Лишних вычислений можно было бы избежать, если учесть тот факт, что

Тогда формулы для N=4 будут использовать те же W-множители, что и формулы для N=8:

Подведем итог:

В основе алгоритма БПФ лежат следующие формулы:

(16)

Теперь рассмотрим конкретную реализацию БПФ. Пусть имеется N=2T элементов последовательности x{N} и надо получить последовательность X{N}. Прежде всего, нам придется разделить x{N} на две последовательности: четные и нечетные элементы. Затем точно так же поступить с каждой последовательностью. Этот итерационный процесс закончится, когда останутся последовательности длиной по 2 элемента. Пример процесса для N=16 показан ниже:

Итого выполняется (log2N)-1 итераций.

Рассмотрим двоичное представление номеров элементов и занимаемых ими мест. Элемент с номером 0 (двоичное 0000) после всех перестановок занимает позицию 0 (0000), элемент 8 (1000) - позицию 1 (0001), элемент 4 (0100) - позицию 2 (0010), элемент 12 (1100) - позицию 3 (0011). И так далее. Нетрудно заметить связь между двоичным представлением позиции до перестановок и после всех перестановок: они зеркально симметричны. Двоичное представление конечной позиции получается из двоичного представления начальной позиции перестановкой битов в обратном порядке. И наоборот.

Этот факт не является случайностью для конкретного N=16, а является закономерностью. На первом шаге четные элементы с номером n переместились в позицию n/2, а нечетные из позиции в позицию N/2+(n-1)/2. Где n=0,1,…,N-1. Таким образом, новая позиция вычисляется из старой позиции с помощью функции:

ror(n,N) = [n/2] + N{n/2}

Здесь как обычно [x] означает целую часть числа, а {x} - дробную.

В ассемблере эта операция называется циклическим сдвигом вправо (ror), если N - это степень двойки. Название операции происходит из того факта, что берется двоичное представление числа n, затем все биты, кроме младшего (самого правого) перемещаются на 1 позицию вправо. А младший бит перемещается на освободившееся место самого старшего (самого левого) бита.


рис. 1

Дальнейшие разбиения выполняются аналогично. На каждом следующем шаге количество последовательностей удваивается, а число элементов в каждой из них уменьшается вдвое. Операции ror подвергаются уже не все биты, а только несколько младших (правых). Старшие же j-1 битов остаются нетронутыми (зафиксированными), где j - номер шага:


рис. 2

Что происходит с номерами позиций при таких последовательных операциях? Давайте проследим за произвольным битом номера позиции. Пусть этот бит находился в j-м двоичном разряде, если за 0-й разряд принять самый младший (самый правый). Бит будет последовательно сдвигаться вправо на каждом шаге до тех пор, пока не окажется в самой правой позиции. Это случится после j-го шага. На следующем, j+1-м шаге будет зафиксировано j старших битов и тот бит, за которым мы следим, переместится в разряд с номером T-j-1. После чего окажется зафиксированным и останется на месте. Но именно такое перемещение - из разряда j в разряд T-j-1 и необходимо для зеркальной перестановки бит. Что и требовалось доказать.

Теперь, мы убедились в том, что перестановка элементов действительно осуществляется по принципу, при котором в номерах позиций происходит в свою очередь другая перестановка: зеркальная перестановка двоичных разрядов. Это позволит нам получить простой алгоритм:

for(I = 1; I < N-1; I++){ J = reverse(I,T); // reverse переставляет биты в I в обратном порядке if (I >= J) // пропустить уже переставленные conitnue; S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xI и xJ}

Некоторую проблему представляет собой операция обратной перестановки бит номера позиции reverse(), которая не реализована ни в популярной архитектуре Intel, ни в наиболее распространенных языках программирования. Приходится реализовывать ее через другие битовые операции. Ниже приведен алгоритм функции перестановки T младших битов в числе I:

unsigned int reverse(unsigned int I, int T){ int Shift = T - 1; unsigned int LowMask = 1; unsigned int HighMask = 1 << Shift; unsigned int R; for(R = 0; Shift >= 0; LowMask <<= 1, HighMask >>= 1, Shift -= 2) R |= ((I & LowMask) << Shift) | ((I & HighMask) >> Shift);return R;}

Пояснения к алгоритму. В переменных LowMask и HighMask хранятся маски, выделяющие два переставляемых бита. Первая маска в двоичном представлении выглядит как 0000…001 и в цикле изменяется, сдвигая единицу каждый раз на 1 разряд влево:

0000...0010000...0100000...100...

Вторая маска (HighMask) принимает последовательно значения:

1000...0000100...0000010...000...,

каждую итерацию сдвигая единичный бит на 1 разряд вправо. Эти два сдвига осуществляются инструкциями LowMask <<= 1 и HighMask >>= 1.

Переменная Shift показывает расстояние (в разрядах) между переставляемыми битами. Сначала оно равно T-1 и каждую итерацию уменьшается на 2. Цикл прекращается, когда расстояние становится меньше или равно нулю.

Операция I & LowMask выделяет первый бит, затем он сдвигается на место второго (<<Shift). Операция I & HighMask выделяет второй бит, затем он сдвигается на место первого (>>Shift). После чего оба бита записываются в переменную R операцией "|".

Вместо того чтобы переставлять биты позиций местами, можно применить и другой метод. Для этого надо вести отсчет 0,1,2,…,N/2-1 уже с обратным следованием битов. Опять-таки, ни в ассемблере Intel, ни в распространенных языках программирования не реализованы операции над обратным битовым представлением. Но алгоритм приращения на единицу известен, и его можно реализовать программно. Вот пример для T=4.

I = 0;J = 0;for(J1 = 0; J1 < 2; J4++, J ^= 1)for(J2 = 0; J2 < 2; J3++, J ^= 2) for(J4 = 0; J4 < 2; J4++, J ^= 4) for(J8 = 0; J8 < 2; J8++, J ^= 8) { if (I < J){ S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xIи xJ } I++; }

В этом алгоритме используется тот общеизвестный факт, что при увеличении числа от 0 до бесконечности (с приращением на единицу) каждый бит меняется с 0 на 1 и обратно с определенной периодичностью: младший бит - каждый раз, следующий - каждый второй раз, следующий - каждый четвертый и так далее.

Эта периодичность реализована в виде T вложенных циклов, в каждом из которых один из битов позиции J переключается туда и обратно с помощью операции XOR (В C/C++ она записывается как ^=). Позиция I использует обычный инкремент I++, уже встроенный в язык программирования.

Данный алгоритм имеет тот недостаток, что требует разного числа вложенных циклов в зависимости от T. На практике это не очень плохо, поскольку T обычно ограничено некоторым разумным пределом (16..20), так что можно написать столько вариантов алгоритма, сколько нужно. Тем не менее, это делает программу громоздкой. Ниже я предлагаю вариант этого алгоритма, который эмулирует вложенные циклы через стеки Index и Mask.

int Index[MAX_T];int Mask[MAX_T];int R;for(I = 0; I < T; I++){ Index[I] = 0; Mask[I] = 1 << (T - I - 1);}J = 0;for(I = 0; I < N; I++){ if (I < J){ S = x[I]; x[I] = x[J]; x[J] = S; // перестановка элементов xI и xJ} for(R = 0; R < T; R++) { J ^= Mask[R]; if (Index[R] ^= 1) // эквивалентно Index[R] ^= 1; if (Index[R] != 0)break; }}

Величина MAX_T определяет максимальное значение для T и в наихудшем случае равна разрядности целочисленных переменных ЭВМ. Этот алгоритм, может быть, чуть медленнее, чем предыдущий, но дает экономию по объему кода.

И, наконец, последний алгоритм. Он использует классический подход к многоразрядным битовым операциям: надо разделить 32-бита на 4 байта, выполнить перестановку в каждом из них, после чего переставить сами байты.

Перестановку бит в одном байте уже можно делать по таблице. Для нее нужно заранее приготовить массив reverse256 из 256 элементов. Этот массив будет содержать 8-битовые числа. Записываем туда числа от 0 до 255 и переставляем в каждом порядок битов.

Теперь этот массив применим для последней реализации функции reverse:

unsigned int reverse(unsigned int I, int T){ unsigned int R; unsigned char *Ic = (unsigned char*) &I; unsigned char *Rc = (unsigned char*) &R; Rc[0] = reverse256[Ic[3]]; Rc[1] = reverse256[Ic[2]]; Rc[2] = reverse256[Ic[1]]; Rc[3] = reverse256[Ic[0]];R >>= (32 - T); Return R;}

Обращения к массиву reverse256 переставляют в обратном порядке биты в каждом байте. Указатели Ic и Ir позволяют обратиться к отдельным байтам 32-битных чисел I и R и переставить в обратном порядке байты. Сдвиг числа R вправо в конце алгоритма устраняет различия между перестановкой 32 бит и перестановкой T бит. Ниже приводится наглядная геометрическая иллюстрация алгоритма, где стрелками показаны перестановки битов, байтов и сдвиг.


рис. 3

Оценим сложность описанных алгоритмов. Понятно, что все они пропорциональны N с каким-то коэффициентом. Точное значение коэффициента зависит от конкретной ЭВМ. Во всех случаях мы имеем N перестановок со сравнением I и J, которое предотвращает повторную перестановку некоторых элементов. Рядом присутствует некоторый обрамляющий код, применяющий достаточно быстрые операции над целыми числами: присваивания, сравнения, индексации, битовые операциии и условные переходы. Среди них в архитектуре Intel наиболее накладны переходы. Поэтому я бы рекомендовал последний алгоритм. Он содержит всего N переходов, а не 2N как в алгоритме со вложенными циклами или их эмуляцией и не NT как в самом первом алгоритме.