А все же, как бы вы обосновали пользу многозадачности для современных ОС типа Windows?
На смену ОС, которые выполняли текстовые команды, вводимые пользователем с клавиатуры, пришли системы, в которых взаимодействие с пользователем основано на использовании GUI (GraphicalUserInterface, графический интерфейс пользователя).
Значительная часть ПК работает в составе локальных вычислительных сетей. Это привело к тому, что вопросы защиты данных пользователя вновь приобрели первостепенное значение.
Существуют различные виды классификации ОС по тем или иным признакам, отражающие разные существенные характеристики систем.
· По назначению.
- Системы общего назначения. Это достаточно расплывчатое название подразумевает ОС, предназначенные для решения широкого круга задач, включая запуск различных приложений, разработку и отладку программ, работу с сетью и с мультимедиа.
- Системы реального времени. Этот важный класс систем предназначен для работы в контуре управления объектами (такими, как летательные аппараты, технологические установки, автомобили, сложная бытовая техника и т.п.). Из подобного назначения вытекают жесткие требования к надежности и эффективности системы. Должно быть обеспечено точное планирование действий системы во времени (управляющие сигналы должны выдаваться в заданные моменты времени, а не просто «по возможности быстро»). Особый подкласс составляют системы, встроенные в оборудование. Такие системы годами могут выполнять фиксированный набор программ, не требуя вмешательства человека-оператора на более глубоком уровне, чем нажатие кнопки «Вкл.».
Иногда выделяют также такой класс ОС, как системы с «нежестким» реальным временем. Это такие системы, которые не могут гарантировать точное соблюдение временных соотношений, но «очень стараются», т.е. содержат средства для приоритетного выполнения заданий, критичных по времени. Такой системе нельзя доверить управление ракетой, но она вполне справится с демонстрацией видеофильма. Выделение подобных систем в отдельный класс имеет скорее рекламное значение, позволяя таким системам, как WindowsNT и некоторые версии UNIX, тоже называть себя «системами реального времени».
- Прочие специализированные системы. Это различные ОС, ориентированные прежде всего на эффективное решение задач определенного класса, с большим или меньшим ущербом для прочих задач. Можно выделить, например, сетевые системы (такие, как NovellNetware), обеспечивающие надежное и высокоэффективное функционирование локальных сетей.
· По характеру взаимодействия с пользователем.
- Пакетные ОС, обрабатывающие заранее подготовленные задания.
- Диалоговые ОС, выполняющие команды пользователя в интерактивном режиме. Красивое слово «интерактивный» означает постоянное взаимодействие системы с пользователем.
- ОС с графическим интерфейсом. В принципе, их также можно отнести к диалоговым системам, однако использование мыши и всего, что с ней связано (меню, кнопки и т.п.) вносит свою специфику.
- Встроенные ОС, не взаимодействующие с пользователем.
· По числу одновременно выполняемых задач.
- Однозадачные ОС. В таких системах в каждый момент времени может существовать не более чем один активный пользовательский процесс. Следует заметить, что одновременно с ним могут работать системные процессы (например, выполняющие запросы на ввод/вывод).
- Многозадачные ОС. Они обеспечивают параллельное выполнение нескольких пользовательских процессов. Реализация многозадачности требует значительного усложнения алгоритмов и структур данных, используемых в системе.
· По числу пользователей.
- Однопользовательские ОС. Для них характерен полный доступ пользователя к ресурсам системы. Подобные системы приемлемы в основном для изолированных компьютеров, не допускающих доступа к ресурсам данного компьютера по сети или с удаленных терминалов.
- Многопользовательские ОС. Их важной компонентой являются средства защиты данных и процессов каждого пользователя, основанные на понятии владельца ресурса и на точном указании прав доступа, предоставленных каждому пользователю системы.
· По аппаратурной основе.
- Однопроцессорные ОС. В данном курсе будут рассматриваться только они.
- Многопроцессорные ОС. В задачи такой системы входит, помимо прочего, эффективное распределение выполняемых заданий по процессорам и организация согласованной работы всех процессоров.
- Сетевые ОС. Они включают возможность доступа к другим компьютерам локальной сети, работы с файловыми и другими серверами.
- Распределенные ОС. Их отличие от сетевых заключается в том, что распределенная система, используя ресурсы локальной сети, представляет их пользователю как единую систему, не разделенную на отдельные машины.
При сравнительном рассмотрении различных ОС в целом или их отдельных подсистем возникает вечный вопрос – какая из них лучше и почему, какая архитектура системы предпочтительнее, какой из алгоритмов эффективнее, какая структура данных удобнее и т.п.
Очень редко можно дать однозначный ответ на подобные вопросы, если речь идет о практически используемых системах. Система или ее часть, которая хуже других систем во всех отношениях, просто не имела бы права на существование. На самом деле имеет место типичная многокритериальная задача: имеется несколько важных критериев качества, и система, опережающая прочие по одному критерию, обычно уступает по другому. Сравнительная важность критериев зависит от назначения системы и условий ее работы.
1.5.1. Надежность
Этот критерий вообще принято считать самым важным при оценке программного обеспечения, и в отношении ОС его действительно принимают во внимание в первую очередь.
Что понимается под надежностью ОС?
Прежде всего, ее живучесть, т.е. способность сохранять хотя бы минимальную работоспособность в условиях аппаратных сбоев и программных ошибок. Высокая живучесть особенно важна для ОС компьютеров, встроенных в аппаратуру, когда вмешательство человека затруднено, а отказ компьютерной системы может иметь тяжелые последствия.
Во-вторых, способность, как минимум, диагностировать, а как максимум, компенсировать хотя бы некоторые типы аппаратных сбоев. Для этого обычно вводится избыточность хранения наиболее важных данных системы.
В-третьих, ОС не должна содержать собственных (внутренних) ошибок. Это требование редко бывает выполнимо в полном объеме (программисты давно сумели доказать своим заказчикам, что в любой большой программе всегда есть ошибки, и это в порядке вещей), однако следует хотя бы добиться, чтобы основные, часто используемые или наиболее ответственные части ОС были свободны от ошибок.
Наконец, к надежности системы следует отнести ее способность противодействовать явно неразумным действиям пользователя. Обычный пользователь должен иметь доступ только к тем возможностям системы, которые необходимы для его работы. Если же пользователь, даже действуя в рамках своих полномочий, пытается сделать что-то очень странное (например, отформатировать системный диск), то самое малое, что должна сделать ОС, это переспросить пользователя, уверен ли он в правильности своих действий.
1.5.2. Эффективность
Как известно, эффективность любой программы определяется двумя группами показателей, которые можно обобщенно назвать «время» и «память». При разработке системы приходится принимать много непростых решений, связанных с оптимальным балансом этих показателей.
Важнейшим показателем временнóй эффективности является производительность системы, т.е. усредненное количество полезной вычислительной работы, выполняемой в единицу времени. С другой стороны, для диалоговых ОС не менее важно время реакции системы на действия пользователя. Эти показатели могут в некоторой степени противоречить друг другу. Например, в системах разделения времени увеличение кванта времени повышает производительность (за счет сокращения числа переключений процессов), но ухудшает время реакции.
В программировании известна аксиома: выигрыш во времени достигается за счет проигрыша в памяти, и наоборот. Это в полной мере относится к ОС, разработчикам которых постоянно приходится искать баланс между затратами времени и памяти.
Забота от эффективности долгое время стояла не первом месте при разработке программного обеспечения, и особенно ОС. К сожалению, оборотной стороной стремительного увеличения мощности компьютеров стало ослабление интереса к эффективности программ. В настоящее время эффективность является первостепенным требованием разве что в отношении систем реального времени.
1.5.3. Удобство
Этот критерий наиболее субъективен. Можно предложить, например, такой подход: система или ее часть удобна, если она позволяет легко и просто решать те задачи, которые встречаются наиболее часто, но в то же время содержит средства для решения широкого круга менее стандартных задач (пусть даже эти средства не столь просты). Пример: такое частое действие, как копирование файла, должно выполняться при помощи одной простой команды или легкого движения мыши; в то же время для изменения разделов диска не грех почитать руководство, поскольку это может понадобиться даже не каждый год.
Разработчики каждой ОС имеют собственные представления об удобстве, и каждая ОС имеет своих приверженцев, считающих именно ее идеалом удобства.
1.5.4. Масштабируемость
Довольно странный термин «масштабируемость» (scalability) означает возможность настройки системы для использования в разных вариантах, в зависимости от мощности вычислительной системы, от набора конкретных периферийных устройств, от роли, которую играет конкретный компьютер (сервер, рабочая станция или изолированный компьютер) от назначения компьютера (домашний, офисный, исследовательский и т.п.).