Універсальні плати для цифрової обробки сигналів не дозволяють реалізувати аналогові ВП, такі, наприклад, як осцилографи, мультиметри, аналізатори спектра та ін. Спеціалізовані плати ВП реалізуються сьогодні в основному на основі «програмованої» логіки (на мікроконтролерах – МК та/або програмованих логічних інтегральних схемах – ПЛІС). Це дозволяє перекласти частину обробки вхідних сигналів на АЗВП, що істотно розвантажує ПК.
Таким чином, у кожному способі можливі варіанти реалізації схем як на «жорсткій», так і на «програмованій» логіці. У першому випадку наявність декількох каналів вводу-виводу сигналів дозволяє отримати більш низьке споживання, а в другому – створити інтелектуальний АЗВП. Однак таким чином реалізуються тільки окремі ВП.
Пропонується наступна концепція побудови нового лабораторного практикуму:
1.Спочатку використовується ряд лабораторних робіт, пов’язаних з набуттям практичних навичок програмування внутрішньої структури МК та основних периферійних пристроїв, що входять до його складу (порти вводу\виводу, пам’ять даних, таймери-лічильники, система переривань тощо).
2. На другому рівні навчання розробляються прости мікроконтролерні пристрої з використанням деяких зовнішніх пристроїв (клавіатури, різноманітних індикаторів, цифро-аналогових перетворювачів та інших датчиків вхідних сигналів). Ці периферійні пристрої можуть входити до складу навчально-відлагоджувальних стендів або знаходитись зовні. При цьому повинні застосовуватися також програмні модулі, розроблені та відлагоджені на попередньому рівні навчання.
3. На третьому рівні навчання розроблюються більш складні мікроконтролерні пристрої і системи з участю персональних комп’ютерів (наприклад, віртуальні вимірювальні пристрої).
4. Відлагодження мікроконтролерних пристроїв на другому й третьому етапах навчання практично неможливо без використання вимірювальних приладів (генераторів сигналів, осцилографів, логічних аналізаторів, та інших), в якості таких з успіхом можуть використовуватися віртуальні прилади на основі ПК.
5. Апаратні та програмні засоби ЛП повинні дозволяти студенту використовувати для розробки мікроконтролерних пристроїв різні типи МК(AVR, PIC або MCS-51).
6. Лабораторний практикум повинен дозволяти виконання завдань в дистанційному режимі. Це знову ж таки диктує необхідність використання в структурі апаратних засобів віртуальних приладів, які будуть доступними користувачеві (студенту). При цьому також необхідно організувати роботу користувача з методичними матеріалами, апаратними та програмними засобами. А це в свою чергу вимагає наявність простого і наглядного графічного інтерфейсу ЛП.
Лабораторні роботи складені за блочно-ієрархічним підходом. Згідно якого, перші лабораторні роботи які стоять на нижчому ієрархічному ступеню, самі малі за складністю та об’ємом. Вони включають у себе роботу з одним периферійним приладом МК. Так можливо більше поглибити знання шляхом детального розглядання окремої задачі. На наступному ступені розглядаються задачі з додатковими завданнями, які потребують, готові вже на попередньому етапі, алгоритми та рішення, а ті в свою чергу становлять фундамент для наступного ієрархічного рівня. Так до тих пір, поки не реалізується завдання сконструювати який не будь багатофункціональний мікроконтролерний прилад чи систему. Цей підхід проілюстровано на рисунку 2.1.
Завдання у лабораторному практикумі забезпечують просте засвоювання знань за різними темами, так як охоплюються більшість функціональних вузлів, у кожній наступній роботі є можливість використовувати завдання для виконання з вимогами до попередніх робіт. Наприклад, вивчаючи роботу таймера та формування часових інтервалів легше реалізовувати та перевіряти її за допомогою лінійки світлодіодної індикації. Або, навчившись вводити аналогові сигналі і передавати дані до ПК, можна перейти до реалізації віртуального осцилографа.
Для побудови віртуального вимірювального комплексу необхідно з'ясувати, які прилади повинні входити в його структуру. Для цього проведений аналіз завдання для лабораторних робіт з дисципліни «Проектування мікроконтролерних пристроїв», що показує, що для їхнього виконання необхідні наступні прилади:
· Генератор слів;
· Генератор сигналів довільної форми;
· Логічний аналізатор;
· Осцилограф.
Нижче наведена таблиця із вказівкою всіх лабораторних робіт і приладів, необхідних для виконання кожної роботи.
Осцилограф | Генератор байтів | Генератор сигналів | Логічний аналізатор | Мультиметр | Частотомір |
Лабораторна робота №1 | + | + | |||
Лабораторна робота №2 | + | + | |||
Лабораторна робота №3 | + | ||||
Лабораторна робота №4 | + | ||||
Лабораторна робота №5 | + | + | |||
Лабораторна робота №6 | + | ||||
Лабораторна робота №7 | + | + |
Таблиця 1. Прилади для лабораторних робіт
При цьому одночасно необхідно використання тільки двох приладів : ГС(ГСПФ)+ЛА(ОСЦ).
Для реалізації зазначених вище віртуальних приладів необхідні такі апаратні засоби – мікроконтролер, АЦП, ЦАП, перетворювачі рівнів та перетворювачі інтерфейсів. Всі ці засоби присутні на програмно-відлагоджувальному стенді „AVR MicroLAB”. Таким чином, віртуальний вимірювальний комплекс може бути реалізований на таких самих технічних засобах, які використаються для навчання.
Вихідне технічне завдання предписує використовувати в апаратній частині ВЛ навчально-відлагоджувальні стенди «AVR-Microlab». Такі стенди дозволяють виконувати весь список лабораторних робіт з лабораторного практикуму, мають малу вартість та мають можливість використовувати МК не тільки фірми Atmel, а й Microchip (за умови невеликою доробки). Об’єкт дослідження ВЛ використовує «AVR-Microlab». На основі цього стенду будуються мікроконтролерні пристрої та МКС. Стенд побудований за блочно-модульним принципом, підтримує інтерфейси USB та RS232. Істотним плюсом є можливість використання USB.
Використовуючи такі стенди, можна навчитися та засвоїти загальні принципи функціонування, які було заложено в основу при створенні цілого класу МК (від різних виробників). МК, які підтримує стенд, дозволяють реалізувати широку гаму простих пристроїв автоматизації, серед яких може бути власний модуль вводу/виводу.
Аналіз існуючих аналогів ВЛ показує, що об’єкт дослідження з’єднується з ПК через посередництво багатофункціонального модулю вводу/виводу (БМВВ), яким може бути готовий контролер, сигнальний процесор чи пристрій власної розробки. Модуль виконує керування об’єктом за рахунок виводу та зчитує стан об’єкту за рахунок вводу. Істотним недоліком готових рішень для таких модулів є їхня вартість.
Проблема може бути вирішена за рахунок використання в якості БМВВ апаратних засобів ВВК [13-15]. ВВК побудований на основі відкритої архітектури, а його технічних можливостей досить для задовільнення вимог лабораторного практикуму, вартість значно нижча. На відміну від готових рішень, ПЗ ВВК легко може бути пристосоване до використання у ВЛ. ВВК використовує апаратні можливості навчально-відлагоджувального стенду «AVR-Microlab».
Апаратне забезпечення зображене на рисунку 3.
Рисунок 3 – Архітектура апаратного забезпечення ВЛ
Таким чином, використання двох навчально-відлагоджувальних стендів дає можливість реалізувати лабораторний практикум в повному обсязі. Апаратне забезпечення може бути легко під’єднаним до всіх сучасних ПК через інтерфейс USB.
Даний віртуальний вимірювальний комплекс реалізується на основі програмно - відлагоджувального стенда „AVR MicroLAB”.
Для реалізації кожного приладу необхідні такі апаратні ресурси як порти вода/виводу мікроконтролера, пам'ять даних і пам'ять програм мікроконтролера.
У результаті аналізу реалізацій даних приладів отримана, що при об'єднанні їх у вимірювальний комплекс на основі AVRMicroLAB загальний розмір коду програми буде становити приблизно 3 Кб, загальний розмір змінних 2 Кб. Таким чином, для реалізації даного ВВК на основі AVRMicroLAB у його состав можуть входити такі МК: ATMega 323 (2К, 32К), ATMega 32 (2К, 32К).
Для реалізації двоканального осцилографа необхідно два входи модуля аналого-цифрового перетворювача AIN0, AIN1.
Для реалізації генератора байтів використаються 8 виходів мікроконтролера.
Для реалізації генератора сигналів довільної форми використається блок цифро-аналогового перетворювача, побудованого на ИМС DA3 типи TLC5615 фірми Texas Instruments, що представляє собою десятирозрядний ЦАП з послідовним SPI- інтерфейсом, виведеним на порт «B» контролера. Таким чином, використаються розряди 4-7 порту В. Фільтр вихідного сигналу першого порядку організується за допомогою модуля блоку вихідних ключів, до складу якого входять 2 RC фільтри НЧ для фільтрації вихідних сигналів мікроконтролера. Вони підключаються до виходів 4-5 порту С.
Для реалізації логічного аналізатора використаються розряди 8 виходів мікроконтролера (для введення даних).
Таким чином, з урахуванням описаної конфігурації кожного із приладів можна запорпонувати 2 варіанти розподілу апаратних ресурсів між ними.