Смекни!
smekni.com

Отчет по преддипломной практике 6 (стр. 6 из 10)

- поддержка IrDA;

- типы поддерживаемых дисководов (2,88 Мбайт поддерживают теперь почти все контроллеры, но эта возможность не востребована дисководами и дискетами).

3.2 Характеристики и параметры МП, на базе которых выполнены ПК, применяемые на предприятии прохождения практик

На предприятии в основном установлены МП Intel Pentium 4

Pentium 4 1800 на ядре Willamette

В их основе лежит принципиально отличающееся от предшественников ядро — Willamette. Процессоры Pentium 4 используют новую системную шину, позволявшую передавать данные с частотой, превышавшей базовую в четыре раза (англ. quad pumped bus). Таким образом, эффективная частота системной шины первых процессоров Pentium 4 составляла 400 МГц (физическая частота — 100 МГц).

Процессоры на ядре Willamette имеют кэш данных первого уровня объёмом 8 Кбайт, кэш последовательностей микроопераций объёмом около 12 000 микроопераций, а также кэш-память второго уровня объёмом 256 Кбайт. При этом процессор содержит 42 млн транзисторов, а площадь кристалла составляла 217 мм², что объясняется устаревшей технологией производства — 180 нм КМОП с алюминиевыми соединениями Процессоры на ядре Willamette выпускались в корпусе типа FCPGA (в случае с Pentium 4 этот корпус представлял собой микросхему в корпусе OLGA, установленную на переходник PGA) и предназначались для установки в системные платы с разъёмом Socket 423, а затем — в корпусе типа FC-mPGA2 (Socket 478).

Процессоры работают на тактовой частоте 1,3—2 ГГц с частотой системной шины 400 МГц, напряжение ядра составляло 1,7—1,75 В в зависимости от модели, а максимальное тепловыделение — 100 Вт на частоте 2 ГГц.

Intel Pentium 4 1800 на ядре Northwood

Представлявшем собой ядро Willamette с увеличенным до ½ Мбайт объёмом кэш-памяти второго уровня. Процессоры на ядре Northwood содержат 55 млн транзисторов и производились по новой 130 нм КМОП-технологии с медными соединениями. За счёт использования новой технологии производства удалось значительно сократить площадь кристалла: кристалл процессоров на ядре Northwood ревизии B0 имел площадь 146 мм², а в последующих ревизиях площадь кристалла уменьшилась до 131 мм².

Тактовая частота процессоров Pentium 4 на ядре Northwood составляла 1,6—3,4 ГГц, частота системной шины — 400, 533 или 800 МГц в зависимости от модели. Все процессоры на ядре Northwood выпускались корпусе типа FC-mPGA2 и предназначались для установки в системные платы с разъёмом Socket 478, напряжение ядра этих процессоров составляло 1,475—1,55 В в зависимости от модели, а максимальное тепловыделение — 134 Вт на частоте 3,4 ГГц.

Pentium 4 3066 МГц, поддерживающий технологию виртуальной многоядерности — Hyper-threading. Этот процессор оказался единственным процессором на ядре Northwood с частотой системной шины 533 МГц, обладавшим поддержкой технологии Hyper-threading. В дальнейшем эту технологию поддерживали все процессоры с частотой системной шины 800 МГц (2,4—3,4 ГГц).

Pentium 4 на ядре Prescott. Впервые с момента своего появления архитектура NetBurst претерпела значительные изменения.

Основным отличием ядра Prescott от предшественников являлся удлинённый с 20 до 31 стадии конвейер. Это позволило увеличить частотный потенциал процессоров Pentium 4, однако могло приводить к более серьёзным потерям производительности при ошибке предсказания переходов. В связи с этим ядро Prescott получило усовершенствованный блок предсказания переходов, позволивший значительно сократить количество ошибок предсказания. Кроме того, было модернизировано АЛУ, в частности, был добавлен блок целочисленного умножения, отсутствовавший в процессорах на ядрах Willamette и Northwood. Кэш данных первого уровня был увеличен с 8 до 16 Кбайт, а кэш второго уровня — с ½ до 1 Мбайт.

Процессоры Pentium 4 на ядре Prescott получили поддержку нового дополнительного набора команд — SSE3, а также поддержку технологии EM64T (в ранних процессорах поддержка 64-битных расширений была отключена). Кроме того, была оптимизирована технология Hyper-threading (в частности, в набор SSE3 вошли инструкции, предназначенные для синхронизации потоков).

В результате изменений, внесённых в архитектуру NetBurst, производительность процессоров на ядре Prescott изменилась по сравнению с процессорами на ядре Northwood, имеющими равную частоту, следующим образом: в однопоточных приложениях, использующих инструкции x87, MMX, SSE и SSE2, процессоры на ядре Prescott оказывались медленнее, чем предшественники, а в приложениях, использующих многопоточность или чувствительных к объёму кэш-памяти второго уровня, опережали их

Тактовая частота процессоров Pentium 4 на ядре Prescott составляла 2,4—3,8 ГГц, частота системной шины — 533 или 800 МГц в зависимости от модели. При этом в настольных процессорах с тактовой частотой ниже 2,8 ГГц была отключена поддержка технологии Hyper-threading. Изначально процессоры на ядре Prescott выпускались в корпусе типа FC-mPGA2 (Socket 478), а затем — в корпусе типа FC-LGA4 (LGA775). Процессоры содержали 125 млн транзисторов, производились по 90 нм технологии КМОП с использованием растянутого кремния (англ. strained silicon), площадь кристалла составляла 112 мм², напряжение ядра — 1,4—1,425 В в зависимости от модели.

Несмотря на то, что процессоры на ядре Prescott производились по новой 90 нм технологии, добиться снижения тепловыделения не удалось: так, например, Pentium 4 3000 на ядре Northwood имел типичное тепловыделение 81,9 Вт, а Pentium 4 3000E на ядре Prescott в корпусе типа FC-mPGA2 — 89 Вт. Максимальное тепловыделение процессоров Pentium 4 на ядре Prescott составляло 151,13 Вт на частоте 3,8 ГГц.

Pentium 4 на модернизированном ядре Prescott. Это ядро отличалось от предшественника лишь увеличенным до 2 Мбайт объёмом кэш-памяти второго уровня, поэтому получило наименование Prescott 2M. Количество транзисторов в процессорах на новом ядре увеличилось до 188 млн, площадь кристалла — до 135 мм², а напряжение ядра не изменилось по сравнению с процессорами на ядре Prescott.

Все процессоры на ядре Prescott 2M выпускались в корпусе типа FC-LGA4, имели частоту системной шины 800 МГц, поддерживали технологии Hyper-threading и EM64T. Тактовая частота процессоров Pentium 4 на ядре Prescott 2M составляла 3—3,8 ГГц.

Pentium 4 641 на ядре Cedar Mill

Процессоры на ядре Cedar Mill были представлены компанией Intel 16 января 2006 года. Cedar Mill стало последним ядром, использовавшимся в процессорах Pentium 4. Оно представляло собой ядро Prescott 2M, выпускаемое по новой технологии — 65 нм. Применение 65 нм технологии позволило уменьшить площадь кристалла до 81 мм².

Существовало четыре модели процессоров Pentium 4 на ядре Cedar Mill: 631 (3 ГГц), 641 (3,2 ГГц), 651 (3,4 ГГц), 661 (3,6 ГГц). Все они работали с частотой системной шины 800 МГц, предназначались для установки в системные платы с разъёмом LGA775, а также поддерживали технологии Hyper-threading и EM64T. Напряжение питания этих процессоров составляло 1,2—1,3375 В, максимальное тепловыделение — 116,75 Вт.

Процессоры Pentium 4 на ядре Cedar Mill выпускались до 8 августа 2007 года, когда компания Intel объявила о снятии с производства всех процессоров архитектуры NetBurst.

3.3 Структура МПС

Микроархитектура процессора Pentium 4

На первый взгляд Pentium 4 кажется вполне традиционной CISC-машиной с большим и громоздким набором команд, поддерживающим 8-, 16- и 32-разрядные целочисленные операции, а также 32- и 64-разрядные операции с плавающей точкой. В нем всего 8 доступных регистров, причем ни один из них не повторяет другие. Допустимая длина команд составляет 1-17 байт.

На самом же деле процессор Pentium 4 основан на современном надежном RISC-ядре с развитой конвейеризацией. Его тактовая частота уже очень высока, а в последующие годы, скорее всего, вырастет еще больше. Удивительно, как инженерам Intel на основе архаичной архитектуры удалось построить процессор, отвечающий всем современным требованиям.

Обзор микроархитектуры NetBurst

Микроархитектура Pentium 4. называемая NetBurst. ознаменовала собой решительный отход от принципов микроархитсктуры Р6. использовавшейся в процессорах Pentium Pro, Pentium II и Pentium III. Она дает определенное представление о том, на какой базе продукция Intel будет разрабатываться в течение нескольких ближайших лет. Примерная схема микроархитектуры Pentium 4 изображена на рисунке6.

Рисунок 6. Микроархитектура Pentium 4

Pentium 4 состоит из четырех основных блоков: подсистемы памети, блока предварительной обработки, блока контроля исполнения с изменением после­довательности и блока исполнения. Рассмотрим эти блоки по порядку, начиная с верхнего левого и продвигаясь против часовой стрелки.

В состав подсистемы памяти входит объединенный кэш второго уровня (L2), а также логика доступа к внешнему ОЗУ по шине памяти. В первом поколении Pentium 4 объем L2 составлял 256 Кбайт; во втором — 512 Кбайт; в третьем — 1 Мбайт. L2 представляет собой 8-входовую ассоциативную кэш-память с 128-байтным строками. Если запрос к кэшу второго уровня не приносит результата, организуются две 64-байтных передачи в основную намять, посте чего из нес вы­бираются необходимые блоки. Данный кэш L2 относится к категории КЭШей с отложенной записью. Иными словами, новые данные в измененной строке записываются обратно в память лишь после сброса.

С кэшем тесно связан блок предварительной выборки (он не показан на рисунке), который пытается перенести данные из основной памяти в L2 еще до того, как эти данные запрошены. Из L2 данные могут на высокой скорости передаваться в другие блоки кэш-памяти. За один цикл может быть выполнена одна операция выборки из L2; так, на тактовой частоте 3 ГГц из L2 в другие кэши теоретически можно передать до 1,5 млрд 64-байтных блоков в секунду - таким образом, пропускная способность становится равной 96 Гбайт/с

Под изображенной на рисунке 5 подсистемой памяти находится блок предварительной обработки, который выбирает команды на L2 и декодирует их в порядке выполнения команд программы. Каждая команда на уровне ISA разбивается на последовательность RISC-подобных микроопераций. Для упрощения команд блок выборки-декодирования определяет, какие микрооперации необходимы для решения внутренних задач. В более сложных случаях производится поиск последовательности микроопераций в памяти микрокоманд. В любом случае команда уровня ISA процессора Pentium 4 преобразуется в последовательность микроопераций, подлежащих исполнению RISC-ядром микросхемы. Этот механизм позволяет «навести мосты» между устаревшим набором CISC-команд и современным трактом данных RISC.