b) суммарные потребности превышают суммарные запасы .
Линейная функция одинакова в обоих случаях, изменяется только вид системы ограничений.
Найти минимальное значение линейной функции
при ограничениях
,i = 1, 2, ..., m, (случай а)
, j = 1, 2, ..., n;
, i = 1, 2, ..., m, (случай б)
, j = 1, 2, ..., n,
xij³0 (i = 1, 2, ..., m; j = 1, 2, ..., n).
Открытая модель решается приведением к закрытой модели.
В случае (а), когда суммарные запасы превышают суммарные потребности, вводится фиктивный потребитель Bn+1, потребности которого bn+1 = . В случае (б), когда суммарные потребности превышают суммарные запасы, вводится фиктивный поставщик Am+1, запасы которого am+1 = .
Стоимость перевозки единицы груза как фиктивного потребителя, так и стоимость перевозки единицы груза от фиктивного поставщика полагают равными нулю, так как груз в обоих случаях не перевозится.
После преобразований задача принимает вид закрытой модели и решается обычном способом. При равных стоимостях перевозки единицы груза от поставщиков к фиктивному потребителю затраты на перевозку груза реальным потребителям минимальны, а фиктивному потребителю будет направлен груз от наименее выгодных поставщиков. То же самое получаем и в отношении фиктивного поставщика.
Прежде чем решать какую-нибудь транспортную задачу, необходимо сначала проверить, к какой модели она принадлежит, и только после этого составить таблицу для ее решения.
3. Определение оптимального и опорного плана транспортной задачи
Как и при решении задачи линейного программирования, симплексным методом, определение оптимального плана транспортной задачи начинают с нахождения какого-нибудь ее опорного плана.
Число переменных Xijв транспортной задаче с mпунктами отправления и nпунктами назначения равно nm, а число уравнений в системах (2) и (3) равноn+m. Так как мы предполагаем, что выполняется условие (5), то число линейно независимых уравнений равно n+m-1 отличных от нуля неизвестных.
Если в опорном плане число отличных от нуля компонентов равно в точности n+m-1, то план является не выраженным, а если меньше - то выраженным.
Для определения опорного плана существует несколько методов. Три из них - метод северно-западного угла, метод минимального элемента и метод аппроксимации Фогеля - рассмотрены ниже.
При составлении первоначального опорного плана методом северо-западного угла стоимость перевозки единицы не учитывается, поэтому построенный план далек от оптимального, получение которого связано с большим объемом вычислительных работ. Обычно рассмотренный метод используется при вычислениях с помощью ЭВМ.
Как и для всякой задачи линейного программирования, оптимальный план транспортной задачи является и опорным планом.
Для определения оптимального плана транспортной задачи можно использовать изложенные выше методы. Однако ввиду исключительной практической важности этой задачи и специфики ее ограничений [каждое неизвестное входит лишь в два уравнения системы (2) и (3) и коэффициенты при неизвестных равны единице] для определения оптимального плана транспортной задачи разработаны специальные методы. Два из них - метод потенциалов и Венгерский метод - рассматриваются ниже.
4. Методы определения первоначального опорного плана
4.1. Метод минимального элемента
Суть метода заключается в том, что из всей таблицы стоимостей выбирают наименьшую и в клетку, которая ей соответствует, помещают меньшее из чисел
и . Затем из рассмотрения исключают либо строку, соответствующую поставщику, запасы которого полностью израсходованы, либо столбец, соответствующий потребителю, потребности которого полностью удовлетворены, либо и строку и столбец, если израсходованы запасы поставщика и удовлетворены потребности потребителя. Из оставшейся части таблицы стоимостей снова выбирают наименьшую стоимость, и процесс распределения запасов продолжают, пока все запасы не будут распределены, а потребности удовлетворены.Составить первоначальный опорный план методом минимального элемента для транспортной задачи вида:
2 | 3 | 4 | 15 |
11 | 6 | 10 | 1 |
8 | 9 | 3 | 3 |
4 | 1 | 2 | 21 |
10 | 20 | 10 |
Решение:
Задача сбалансирована.
Строим первоначальный опорный план методом минимального элемента.
6. Шестая перевозка осуществляется с пункта
в пункт потребления т.к. (без учета первого, второго столбца, первой, третьей и четвертой строки).Опорный план имеет вид;
10 | 5 | 0 |
0 | 1 | 0 |
0 | 3 | 0 |
0 | 11 | 10 |
4.2. Метод аппроксимации Фогеля
При определении опорного плана транспортной задачи методом аппроксимации Фогеля находят разность по всем столбцам и по всем строкам между двумя записанными в них минимальными тарифами. Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают минимальную. В строке (или в столбце), которой данная разность соответствует, определяют минимальная стоимость.
Если минимальная стоимость одинакова для нескольких клеток столбца (строки), то для заполнения выбирают ту клетку, которая расположена в столбце (строке), соответствующем наибольшей разности между двумя минимальными стоимостями, находящимися в данном столбце (строке).
Пример
Найти методом аппроксимации Фогеля первоначальный опорный план транспортной задачи:
(Здесь мы перенесли потребности в верхнюю строку для удобства построения плана). Рассмотрим задачу, приведенную для методов северо-западного угла и минимального элемента