Смекни!
smekni.com

Имитационное моделирование экономической деятельности предприятия (стр. 3 из 6)

Для изучения процесса функционирования каждой конкретной сложной системы с учетом случайных факторов необходимо иметь достаточно четкое представление об источниках случайных воздействий и весьма надежные данные об их количественных характеристиках. Поэтому любому расчету или теоретическому анализу, связанному с исследованием сложной системы, предшествует экспериментальное накопление статистического материала, характеризующего поведение отдельных элементов и системы в целом в реальных условиях. Обработка этого материала позволяет получить исходные данные для расчета и анализа.

Законом распределения случайной величины называют соотношение, позволяющее определить вероятность появления случайной величины в любом интервале. Его можно задать таблично, аналитически (в виде формулы) и графически.

Существует несколько законов распределения случайных величин.

1.3.1. Равномерное распределение

Данный вид распределения применяется для получения более сложных распределений, как дискретных, так и непрерывных. Такие распределения получаются с помощью двух основных приемов:

a) обратных функций;

b) комбинирования величин, распределенных по другим законам.

Равномерный закон – закон распределения случайных величин, имеющий симметричный вид (прямоугольник). Плотность равномерного распределения задается формулой:

т.е.на интервале, которому принадлежат все возможные значения случайной величины, плотность сохраняет постоянное значение (Рис.1).


Рис.1 Функция плотности вероятности и характеристики равномерного распределения

В имитационных моделях экономических процессов равномерное распределение иногда используется для моделирования простых (одноэтапных) работ, при расчетах по сетевым графикам работ, в военном деле – для моделирования сроков прохождения пути подразделениями, времени рытья окопов и строительства фортификационных сооружений.

Равномерное распределение используется , если об интервалах времени известно только то, что они имеют максимальный разброс, и ничего не известно о распределениях вероятностей этих интервалов.

1.3.2. Дискретное распределение

Дискретное распределение представлено двумя законами:

1) биноминальным, где вероятность наступления события в нескольких независимых испытаниях определяется по формуле Бернулли:

, где

n – количество независимых испытаний

m – число появления события в n испытаниях.

2) распределением Пуассона, где при большом количестве испытаний вероятность наступления события очень мала и определяется по формуле:

, где

k – число появлений события в нескольких независимых испытаниях

- среднее число появлений события в нескольких независимых испытаниях.

1.3.3. Нормальное распределение

Нормальное, или гауссово распределение, - это, несомненно, одно из наиболее важных и часто используемых видов непрерывных распределений. Оно симметрично относительно математического ожидания.

Непрерывная случайная величина t имеет нормальное распределение вероятностей с параметрами т и

> О, если ее плотность вероятностей имеет вид (Рис.2, Рис.3):

где т - математическое ожидание M[t];


- среднеквадратичное отклонение.

Рис.2, Рис.3 Функция плотности вероятности и характеристики нормального распределения

Любые сложные работы на объектах экономики состоят из многих коротких последовательных элементарных составляющих работ. Поэтому при оценках трудозатрат всегда справедливо предположение о том, что их продолжительность – это случайная величина, распределенная по нормальному закону.

В имитационных моделях экономических процессов закон нормального распределения используется для моделирования сложных многоэтапных работ.

1.3.4. Экспоненциальное распределение

Оно также занимает очень важное место при проведении системного анализа экономической деятельности. Этому закону распределения подчиняются многие явления, например:

1 время поступления заказа на предприятие;

2 посещение покупателями магазина-супермаркета;

3 телефонные разговоры;

4 срок службы деталей и узлов в компьютере, установленном, например, в бухгалтерии.

Функция экспоненциального распределения выглядит следующим образом:

F(x)=

при 0<x<∞, где

- параметр экспоненциального распределения,
>0.

Экспоненциальное распределение являются частными случаями гамма - распределения.


На Рис.4 приведены характеристики гамма-распределения, а также график его функции плотности для различных значений этих характеристик.

Рис. 5 Функция плотности вероятности гамма-распределения

В имитационных моделях экономических процессов экспоненциальное распределение используется для моделирования интервалов поступления заказов, поступающих в фирму от многочисленных клиентов. В теории надежности применяется для моделирования интервала времени между двумя последовательными неисправностями. В связи и компьютерных науках – для моделирования информационных потоков.

1.3.5. Обобщенное распределение Эрланга

Это распределение, имеющее несимметричный вид. Занимает промежуточное положение между экспоненциальным и нормальным. Плотность вероятностей распределения Эрланга представляется формулой:

P(t)= при t≥0; где

K-элементарные последовательные составляющие, распределенные по экспоненциальному закону.

Обобщенное распределение Эрланга применяется при создании как математических, так и имитационных моделей.

Это распределение удобно применять вместо нормального распределения, если модель свести к чисто математической задаче. Кроме того, в реальной жизни существует объективная вероятность возникновения групп заявок в качестве реакции на какие-то действия, поэтому возникают групповые потоки. Применение чисто математических методов для исследования в моделях эффектов от таких групповых потоков либо невозможно из-за отсутствия способа получения аналитического выражения, либо затруднено, так как аналитические выражения содержат большую систематическую погрешность из-за многочисленных допущений, благодаря которым исследователь смог получить эти выражения. Для описания одной из разновидностей группового потока можно применить обобщенное распределение Эрланга. Появление групповых потоков в сложных экономических системах приводит к резкому увеличению средних длительностей различных задержек (заказов в очередях, задержек платежей и др.), а также к увеличению вероятностей рисковых событий или страховых случаев.

1.3.6. Треугольное распределение

Треугольное распределение является более информативным, чем равномерное. Для этого распределения определяются три величины — минимум, максимум и мода. График функции плотности состоит из двух отрезков прямых, одна из которых возрастает при изменении X от минимального значения до моды, а другая убывает при изменении X от значения моды до максимума. Значение математического ожидания треугольного распределения равно одной трети суммы минимума, моды и максимума. Треугольное распределение используется тогда, когда известно наиболее вероятное значение на некотором интервале и предполагается кусочно-линейный характер функции плотности.


На Рис.5 приведены характеристики треугольного распределения и график его функции плотности вероятности.

Рис.5 Функция плотности вероятности и характеристики треугольного распределения.

Треугольное распределение легко применять и интерпретировать, однако для его выбора необходимы веские основания.

В имитационных моделях экономических процессов такое распределение иногда используется для моделирования времени доступа к базам данных.


1.4. Планирование имитационного компьютерного эксперимента

Имитационная модель независимо от выбранной системы моделирования (например, Pilgrim или GPSS) позволяет получить два первых момента и информацию о законе распределения любой величины, интересующей экспериментатора (экспериментатор – это субъект, которому нужны качественные и количественные выводы о характеристиках исследуемого процесса).