Рис.5. Алгоритм вычисления
Программа нахождения произведения двух матриц
CLS
PRINT BBЕDИTЕ(A)
INPUT "BBЕDИTЕ a11,a12,a13"; a11, a12, a13
INPUT "BBЕDИTЕ a21,a22,a23"; a21, a22, a23
INPUT "BBЕDИTЕ a31,a32,a33"; a31, a32, a33
CLS
PRINT BBЕDИTЕ(B)
INPUT "BBЕDИTЕ b11,b12,b13"; b11, b12, b13
INPUT "BBЕDИTЕ b21,b22,b23"; b21, b22, b23
INPUT "BBЕDИTЕ b31,b32,b33"; b31, b32, b33
CLS
PRINT a11 * b11 + a12 * b21 + a13 * b31; a11 * b12 + a12 * b22 + a13 * b32; a11 * b13 + a12 * b23 + a13 * b33 PRINT a21 * b11 + a22 * b21 + a23 * b31; a21 * b12 + a22 * b22 + a23 * b32; a21 * b13 + a22 * b23 + a23 * b33 PRINT a31 * b11 + a32 * b21 + a33 * b31; a31 * b12 + a32 * b22 + a33 * b32; a31 * b13 + a32 * b23 + a33 * b33 END
Результат:
2.1.3 Вычислить определитель
Рис.6. Алгоритм вычисления
Программа вычисления определителя
PRINTBBЕDИTЕ(A)
INPUT "BBЕDИTЕ a1,b1,c1"; a1, b1, c1
INPUT "BBЕDИTЕ a2,b2,c2"; a2, b2, c2
INPUT "BBЕDИTЕ a3,b3,c3"; a3, b3, c3
PRINT a1 * b2 * c3 + b1 * c2 * a3 + a2 * b3 * c1 - a3 * b2 * c1 - b3 * c2 * a1 - a2 * b1 * c3
Результат: -163
2.1.4 Решить систему уравнений по формулам Крамера
Рис.7. Алгоритм вычисления
Программа решения системы уравнений по формулам Крамера
10 INPUT "BBЕDИTЕ KОЭФФИЦИЕHTЫ ПЕРВОГО УРАВНЕНИЯ"; a1, b1, c1, d1
20 INPUT "BBЕДИTЕ КОЭФФИЦИЕНТЫ ВТОРОГО УРАВНЕНИЯ"; a2, b2, c2, d2
30 INPUT "BBЕДИТЕ КОЭФФИЦИЕНТЫ ТРЕТЬЕГО УРАВНЕНИЯ"; a3, b3, c3, d3
40 d = a1 * b2 * c3 + b1 * c2 * a3 + a2 * b3 * c1 - a3 * b2 * c1 - b3 * c2 * a1 - a2 * b1 * c3
50 IF d = 0 GOTO 90
60 PRINT "x= "; (d1 * b2 * c3 + b1 * c2 * d3 + d2 * b3 * c1 - d3 * b2 * c1 - b3 * c2 * d1 - d2 * b1 * c3) / d
70 PRINT "y= "; (a1 * d2 * c3 + d1 * c2 * a3 + a2 * d3 * c1 - a3 * d2 * c1 - d3 * c2 * a1 - a2 * d1 * c3) / d
80 PRINT "z= "; (a1 * b2 * d3 + b1 * d2 * a3 + a2 * b3 * d1 - a3 * b2 * d1 - b3 * d2 * a1 - a2 * b1 * d3) / d
90 END
Результат: x=0,32; y=0,36; z=0,44
2.2 Основы векторного исчисления
Даны векторы
и . Найти скалярное и векторное произведения векторов и угол между нимиРис.8. Алгоритм вычисления
Программа нахождения скалярного и векторного произведения векторов, угла между ними
INPUT "BBЕДИТЕ КООРДИНАТЫ ПЕРВОГО ВЕКТОРА"; x1, y1, z1
INPUT "BBЕДИТЕ КООРДИНАТЫ ВТОРОГО ВЕКТОРА "; x2, y2, z2
ska = x1 * x2 + y1 * y2 + z1 * z2
PRINT "СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ = "; ska
x3 = y1 * z2 - z1 * y2
y3 = x1 * z2 - z1 * x2
z3 = x1 * y2 - y1 * x2
PRINT "BEKTOPHOE ПPOUЗBEДEHИE a*b= "; x3, y3, z3
a = (x1 ^ 2 + y1 ^ 2 + z1 ^ 2) ^ (1 / 2)
b = (x2 ^ 2 + y2 ^ 2 + z2 ^ 2) ^ (1 / 2)
ugl = ska / (a * b)
PRINT "КОСИНУС УГЛА МЕЖДУ ВЕКТОРАМИ РАВЕН"; ugl
Результат: -14;
; -0,3676583. Графический режим Qbasic
3.1 Построение проекции
Задание. Найти объем пластины и построить ее проекции.
Программа выполнения
m = 71
L = 51
H = 8
R = 9
SCREEN 12
WINDOW (0, 0)-(120, 90)
LINE (90, 90)-(90, 0)
LINE (0, 30)-(120, 30)
LINE (90 -1.1 * m, 30 + .1 * m)-(90 - .1 * m, 30 + .1 * m + L), , B
LINE (90 -1.1 * m, 30 - .1 * m - H)-(90 - .1 * m, 30 - .1 * m), , B
LINE (90 +.1 * m, 30 + .1 * m)-(90 + .1 * m + H, 30 + .1 * m + L), , B
CIRCLE (90- 1.1 * m + .1 * m + R, 30 + L - R), R
CIRCLE (90- .1 * m - .1 * m - R, 30 + .1 * m + .1 * m + R), R
CIRCLE (90- .1 * m - .1 * m - R, 30 + .1 * m + L - .1 * m - R), R
CIRCLE (90- 1.1 * m + .1 * m + R, 30 + .2 * m + R), R PRINT " ОБЪЕМРАВЕН"; m * L * H
3.2 Построение графиков функций
3.2.1 Построить график функции
Программа построения графика
SCREEN 12
WINDOW (-7, -6)-(7, 80)
X1 = -7: X2 = 4
H = (X2 - X1) / 100
Y1 = 3 * X1 ^ 2 + 8 * X1 + 3
PSET (X1, Y1)
FOR X = X1 TO X2 STEP H
Y = 3 * X ^ 2 + 8 * X + 3
LINE -(X, Y)
NEXT
3.2.2 Построить график функции
Программа построения графика
SCREEN 12
WINDOW (-1, -6)-(1, 40)
X1 = -2: X1 = 2
H = (X2 - X1) / 100
Y1 = 192 * X1 ^ 2 + 144 * X1 + 27
PSET (X1, Y1)
FOR X = X1 TO X2 STEP H
Y = 192 * X ^ 2 + 144 * X + 27
NEXT
3.2.3 Построить график функции
Программа построения графика
DEFFNA (X) = 3 / (8 * X + 3) ^ 2 SCREEN 12
WINDOW (-5, -5)-(5, 5)
X1 = -5: Y1 = FNA(X1)
X2 = -.4
X3 = -.3: Y3 = 27
X4 = 5
H = (X2 - X1) / 100
PSET (X1, Y1)
FOR X = X1 TO X2 STEP H
Y = FNA(X)
LINE -(X, Y)
NEXT
H = (X4 - X3) / 100
PSET (X3, Y3)
FOR X = X3 TO X4 STEP H
Y = FNA(X)
LINE -(X, Y)
NEXT
3.3 Геометрические преобразования
Выполнить последовательно геометрические преобразования:
- перенос;
- масштабирование;
- поворот относительно заданной точки.
Программа выполнения геометрических преобразований
SCREEN 12
WINDOW (-50, -10)-(20, 20)
X1 = -1
Y1 = 3
X2 = -9
Y2 = 1
DX = 1
DY = 3
SX = 5
SY = 3
LINE (X1, Y1)-(X2, Y2)'
LINE (X1 + DX, Y1 + DY)-(X2 + DX, Y2 + DY)'
LINE (X1 * SX, Y1 * SY)-(X2 * SX, Y2 * SY)'
LINE (8, 2)-(0, 0)
LINE ((X1 * COS(PI / 4) - Y1 * SIN(PI / 4)), (Y1 * SIN(PI / 4) + Y1 * COS(PI / 4)))-((0 * COS(PI / 4) - 0 * SIN(PI / 4)), (0 * SIN(PI / 4) + 0 * COS(PI / 4)))'
Решение какой-либо задачи с помощью ЭВМ распадается на три основных этапа: постановка задачи, составление алгоритма решения, программная реализация алгоритма на ЭВМ. В данной работе реализованы все указанные выше этапы в среде программирования Qbasic.
В работе представлены задания, направленные на овладение основами программирования в указанной среде: выполнение арифметических операций, решения задач из курса высшей математики, графические возможности.
В результате ее выполнения разработаны программы, охватывющие основные возможности версии, позволяющие выполнять все необходимые действия по составлению, отладке и выполнению программ.
В среде Qbasic существует несколько экранных режимов. Основной исходный экран представляет поле редактирования текста программы. Встроенный текстовый редактор выполняет две функции – редактирования текста и синхронной интерпретации строки. В этой связи строки в некоторых программах не нумеровались. Результаты работы программы, комментарии и сообщения интерпретатора представлялись в текстовом экране (по умолчанию режим SCREEN 0). При работе с графикой изображения строились в графическом экране, который имеет несколько режимов.
Особый интерес представляла система помощи help (подсказок), имеющая контекстную структуру с возможностью копирования примеров из текста подсказок, что позволило освоить работу с языком программирования Qbasic практически самостоятельно.
Таким образом, основная цель курсовой работы по овладению основами программирования в среде Qbasic выполнена.
Список литературы
1. Могилев А.В. Информатика. – М., 1999. – 816 с.
2. Сафронов И.К. Бейсик в задачах и примерах. –– СПб.: BHV, 2001. – 215 с.
3. Семашко Г.Л. Программирование для всех. – М.: Наука, 1986. – 325 с.
4. Ставнистый Н.Н. Qbasic в математике. Решение задач с помощью компьютера. Ч1. – М.: СОЛОН-Р, 2001. – 143 с.
5. Федоренко Ю. Алгоритмы и программы на QBASIC. - СПб.: Питер, 2002. – 287 с.
6. Хомоненко А.Д. Основы современных компьютерных технологий. – СПб.: КОРОНА принт, 1998. – 448 с.
7. Чернов Б.И. Программирование на алгоритмических языках Бейсик, Фортран, Паскаль. – М.: Просвещение, 1991. – 192 с.