Смекни!
smekni.com

Компьютерное моделирование полимеров (стр. 3 из 4)

Целью другого подхода к постановке компьютерного эксперимента может быть понимание общих (универсальных или модельно-инвариантных) закономерностей поведения изучаемой системы, то есть таких закономерностей, которые определяются лишь наиболее типическими особенностями данного класса объектов, но не деталями химического строения отдельно взятого соединения. То есть в этом случае компьютерный эксперимент имеет своей целью установление функциональных связей, а не расчет числовых параметров. Эта идеология в наиболее отчетливой форме присутствует в скейлинговой теории полимеров. С точки зрения такого подхода компьютерное моделирование выступает в роли теоретического инструмента, который, прежде всего, позволяет проверить выводы существующих аналитических методов теории или дополнить их предсказания. Подобное взаимодействие между аналитической теорией и компьютерным экспериментом бывает очень плодотворным, когда в обоих подходах удается использовать идентичные модели. Наиболее ярким примером такого рода обобщенных моделей полимерных молекул может служить так называемая решеточная модель. На ее основе выполнено множество теоретических построений, в частности связанных с решением классической и, в каком то смысле, основной задачи физикохимии полимеров о влиянии объемных взаимодействий на конформацию и, соответственно, на свойства гибкой полимерной цепи. Под объемными взаимодействиями обычно подразумевают короткодействующие силы отталкивания, которые возникают между удаленными вдоль по цепи звеньями, когда они сближаются в пространстве за счет случайных изгибов макромолекулы. В решеточной модели реальную цепь рассматривают как ломаную траекторию, которая проходит через узлы правильной решетки заданного типа: кубической, тетраэдрической и др. Занятые узлы решетки соответствуют полимерным звеньям (мономерам), а соединяющие их отрезки - химическим связям в скелете макромолекулы. Запрет самопересечений траектории (или, иными словами, невозможность одновременного попадания двух и более мономеров в один решеточный узел) моделирует объемные взаимодействия (Рис. 1). То есть если, например, если используется метод МК и при смещении случайно выбранного звена оно попадает в уже занятый узел, то такая новая конформация отбрасывается и уже не учитывается в вычислении интересующих параметров системы. Различные расположения цепи на решетке соответствуют конформациям полимерной цепи. По ним и проводится усреднение требуемых характеристик, например расстояния между концами цепи R.


Исследование такой модели позволяет понять, как объемные взаимодействия влияют на зависимость среднеквадратичной величины <R2> от числа звеньев в цепи N. Конечно величина <R2>, определяющая средние размеры полимерного клубка, играет основную роль в разных теоретических построениях и может быть измерена на опыте; однако до сих пор не существует точной аналитической формулы для расчета зависимости <R2> от N при наличии объемных взаимодействий. Можно также ввести дополнительно энергию притяжения между теми парами звеньев, которые попали в соседствующие узлы решетки. Варьируя эту энергию в компьютерном эксперименте, удается, в частности, исследовать интересное явление, называемое переходом "клубок — глобула", когда за счет сил внутримолекулярного притяжения развернутый полимерный клубок сжимается и превращается в компактную структуру - глобулу, напоминающую жидкую микроскопическую каплю. Понимание деталей такого перехода важно для развития наиболее общих представлений о ходе биологической эволюции, приведшей к возникновению глобулярных белков.

Существуют различные модификации решеточных моделей, например, такие, в которых длины связей между звеньями не имеют фиксированных значений, но способны меняться в определенном интервале, гарантирующем лишь запрет самопересечений цепи именно так устроена широко распространенная модель с "флуктуирующими связями". Однако все решеточные модели объединяет то, что они являются дискретными, то есть число возможных конформаций такой системы всегда конечно (хотя и может составлять астрономическую величину даже при сравнительно небольшом количестве звеньев в цепи). Все дискретные модели обладают очень высокой вычислительной эффективностью, но, как правило, могут исследоваться только методом Монте-Карло.

Для ряда случаев используются континуальные обобщенные модели полимеров, которые способны менять конформацию непрерывным образом. Простейший пример - цепь, составленная из заданного числа N твердых шаров, последовательно соединенных жесткими или упругими связями. Такие системы могут исследоваться как методом Монте-Карло, так и методом молекулярной динамики.

7. Преимущества компьютерного моделирования

С помощью методов квантовой химии можно рассчитать многие свойства молекул в принципе с любой точностью. То есть можно рассчитать такие свойства как геометрические параметры молекул, определяющие равновесную структуру молекулы, потенциальные поверхности, электронные спектры, энергии разрыва межатомных связей и т.д. Однако чаще всего для понимания какого-либо процесса интересно поведение не индивидуальных молекул, а молекулярных ансамблей, то есть коллективные (коллигативные) свойства, например температура плавления или стеклования вещества, его плотность, диффузионные характеристики. Под ансамблем в зависимости от задачи можно понимать как несколько десятков молекул, организованных в виде кластера, так и макроскопическую совокупность, в которой количество молекул соответствует числу Авогадро NA =6,023·1023. В настоящее время методами квантовой химии можно делать достаточно надежные расчеты лишь для молекулярных систем с числом атомов до одной-двух сотен. Как видно этого явно недостаточно для предсказания коллективных свойств или характеристик даже отдельно взятых макромолекул. Кроме того, следует иметь в виду, что полимеры всегда находятся в окружении плотной среды - низкомолекулярного растворителя или других макромолекул. И это окружение также необходимо принимать во внимание.

В компьютерном моделировании, как уже говорилось выше, используется язык классической физики. Этот отказ от рассмотрения молекулы как электронно-ядерной системы, позволяет коренным образом расширить круг явлений и объектов, доступных исследованию в компьютерном эксперименте. При расчетах методами Монте-Карло или молекулярной динамики существующие суперкомпьютеры способны оперировать системами, в которых число частиц достигает нескольких миллионов. Даже на современных персональных компьютерах легко удается моделировать многие коллективные свойства различных систем, включая полимерные растворы и расплавы.

Все термодинамические свойства любой системы зависят от температуры, но изучение зависимости их от состава и строения фаз является важной задачей физической химии. Наиболее важные из них это давление, коэффициент теплового расширения, параметры фазовых равновесий. Квантовая химия описывает молекулы при абсолютном нуле температуры. Влияние теплового движения атомов должно учитываться с помощью иных теоретических подходов. В общем случае можно сказать, что за исключением лишь сравнительно небольшого числа идеализированных ситуаций, поведение любой реальной системы определяется ее свободной энергией. Эта энергия складывается из энергетического (энтальпийного) и энтропийного вкладов. Из них наиболее интересен последний. Он связан с числом конформаций, которое способна принимать индивидуальная молекула, и числом конфигураций всего молекулярного ансамбля. Наблюдаемые на опыте свойства всегда являются результатом усреднения по множеству различных состояний системы. Как правило, только такие свойства (например, среднеквадратичные размеры полимерного клубка, среднеквадратичный дипольный момент и поляризация, характеристики светорассеяния) представляют интерес для полимерных систем. Компьютерный эксперимент нацелен на получение именно такой информации и, следовательно, может быть использован для проведения соответствующих расчетов.

Наконец, существует обширная группа динамических, то есть зависящих от времени, характеристик. Они определяют диффузию, вязкость, коэффициенты седиментации, теплопроводность, отклики системы на внешние воздействия и др. Кроме того, для полимеров чрезвычайно важно знать реологические свойства, включающие поведение растворов и расплавов при течении, при сдвиговых деформациях и т.д. Однако время как параметр не входит в квантово-химические уравнения. Следовательно, если необходимо предсказание таких свойств исходя из молекулярных параметров, должен использоваться численный эксперимент динамического типа (включая методы неравновесной молекулярной динамики).

Важнейшее достоинство методов компьютерного эксперимента - принципиальная возможность строгого описания весьма широкого круга моделей. В то же время строгие аналитические решения могут быть получены только в редких случаях. Обычно же в аналитических теориях приходится прибегать к тем или иным упрощениям, таким, например, как линеаризация исходных уравнений, разложение в ряд по малому параметру, разделение переменных, сведение к задаче меньшей размерности, асимптотическое представление. Практически любые конденсированные многочастичные системы вызывают повышенные сложности для строгого аналитического описания. В этих условиях компьютерный эксперимент становится необходимым для проверки справедливости исходных приближений, заложенных в теорию, и логических следствий, вытекающих из аналитического рассмотрения.