Коэффициент регрессии считается статистически значимым , если tрасчетное › tтабличное с заданными параметрами (уровнем значимости α, = 0,05, и числом степеней свободы υ = n - к -1, где n – число наблюдений, к – число факторных признаков).
Проверка адекватности модели осуществляется с помощью F – критерия Фишера и величины средней ошибки аппроксимации, которая не должна превышать 12 – 15% . Если величина Fрасчетное > Fтабличное , то связь признается существенной. Fтабличное находиться при заданном уровне значимости α = 0,05 и числе степеней свободы v1 =k и v2 = n-k-1. (4)
Модель без учета «Материальных затрат»
В таблице 8 сгенерированы результаты по регрессионной статистике.
Регрессионная статистика | |
Множественный R | 0,997434896 |
R-квадрат | 0,994876372 |
Нормированный R-квадрат | 0,993168496 |
Стандартная ошибка | 2219,306976 |
Наблюдения | 13 |
Таблица 8
Эти результаты соответствуют следующим статистическим показателям:
Множественный R – коэффициент корреляции R,
R-квадрат – коэффициент детерминации R2;
F табличное |
3,862548358 |
В таблице 9 сгенерированы результаты дисперсионного анализа, которые используются для проверки значимости коэффициента детерминации R2.
Таблица 9
df | SS | MS | F | Значимость F | |
Регрессия | 3 | 8607337323 | 2869112441 | 582,5226438 | 1,2734E-10 |
Остаток | 9 | 44327911,1 | 4925323,455 | ||
Итого | 12 | 8651665234 |
Df – число степеней свободы, SS – сумма квадратов отклонений,
MS - дисперсия MS, F – расчетное значение F-критерия Фишера,
Значимость F – значение уровня значимости, соответствующее вычисленному F;
Коэффи циенты | Стандарт ная ошибка | t-статистика | P-Значение | Нижние 95% | Верхние 95% | |
полная себесто- имость, тыс.руб | 2857,593011 | 1130,014906 | 2,528810014 | 0,094646561 | 603,5411613 | 6318,727183 |
сырье, м погонный | 132,3000047 | 8,941959918 | 14,79541464 | 1,27093E-07 | 112,071886 | 152,5281233 |
затраты на оплату труда,тыс.руб. | 1,586039072 | 0,095432478 | 16,61948958 | 4,61669E-08 | 1,370155809 | 1,801922334 |
амортизация, тыс.руб. | 3,357368468 | 0,582082818 | 5,76785358 | 0,000270158 | 2,040605653 | 4,674131282 |
В таблице 10 сгенерированы значения коэффициентов регрессии и их
статистические оценки.
t табличное | 2,306004133 |
Таблица 10
Коэффициенты – значения коэффициентов регрессии,
Стандартная ошибка – стандартные ошибки коэффициентов регрессии,
t – статистика – расчетные значения t – критерия Стьюдента, вычисляемые по формуле 2,
Р-значения – значения уровней значимости ,соответствующие вычисленным значениям t,
Нижние 95% и Верхние 95% - соответствующие границы доверительных интервалов для коэффициентов регрессии.
В таблице 11 сгенерированы предсказанные значения результирующего фактора Y и значения остатков. Последние вычисляются как разность между предсказанным и исходным значениям Y.
Наблюдение | Предсказанное Y | Остатки |
1 | 78576,42428 | -412,4242814 |
2 | 61255,20002 | -187,2000206 |
3 | 33691,17456 | -3127,174561 |
4 | 31418,51735 | 331,4826465 |
5 | 91894,70678 | 1716,293221 |
6 | 79104,48549 | -2045,485491 |
7 | 56074,39615 | -2280,396148 |
8 | 79355,80571 | 1974,194293 |
9 | 58940,14712 | -1761,147116 |
10 | 88956,30336 | 682,6966372 |
11 | 49227,81005 | 2011,189951 |
12 | 18467,43597 | 3221,564032 |
13 | 10633,59316 | -123,5931632 |
Таблица 11
Расчет производился в оболочке «Excel», Сервис → Анализ данных → Регрессия.
tтабличное рассчитывалось с помощью функции СТЬЮДРАСПОБР исходя из формулы (3).
Fтабличное рассчитывалось с помощью функции FРАСПОБР исходя из формулы (4).
Модель без учета «Сырья»
Регрессионная статистика | |
Множественный R | 0,983232832 |
R-квадрат | 0,966746802 |
Нормированный R-квадрат | 0,955662403 |
Стандартная ошибка | 5653,863353 |
Наблюдения | 13 |
Таблица 12
df | SS | MS | F | Значимость F | |
Регрессия | 3 | 8363969696 | 2787989899 | 87,21688674 | 5,68904E-07 |
Остаток | 9 | 287695537,3 | 31966170,81 | ||
Итого | 12 | 8651665234 |
Таблица 13
Коэффи циенты | Станда ртная ошибка | t-статистика | P-Значение | Нижние 95% | Верхние 95% | |
полная себесто имость, тыс.руб | 1992,888488 | 4236,311712 | 0,470430087 | 0,649239402 | -7590,314376 | 11576,09135 |
затраты на оплату труда, тыс.руб. | 1,430363491 | 0,248983274 | 5,744817576 | 0,000278107 | 0,867124195 | 1,993602788 |
материальные затраты, тыс.руб | 1,187585684 | 0,232389908 | 5,11031521 | 0,000636233 | 0,661883189 | 1,713288179 |
аморти зация, тыс.руб. | 2,461032929 | 1,536123969 | 1,602105675 | 0,143596048 | -1,013920904 | 5,935986761 |
t табличное | 2,306004133 |
Таблица 14
Наблюдение | Предсказанное Y | Остатки |
1 | 65758,37475 | 12405,62525 |
2 | 60420,80042 | 647,1995839 |
3 | 30995,16308 | -431,1630845 |
4 | 29093,4229 | 2656,577097 |
5 | 99410,20661 | -5799,206609 |
6 | 74070,10843 | 2988,891574 |
7 | 55740,66995 | -1946,669945 |
8 | 77635,1743 | 3694,825697 |
9 | 63565,34811 | -6386,348112 |
10 | 89934,05543 | -295,0554319 |
11 | 55762,64509 | -4523,645092 |
12 | 23554,57043 | -1865,57043 |
13 | 11655,4605 | -1145,460501 |
Таблица 15
Все пояснения к таблицам , а также способ расчета, указаны в модели без учета «Материальных затрат» .
Перейдем к анализу сгенерированных таблиц обеих моделей.
Значение множественного коэффициента регрессии R в модели без учета «Материальных затрат» равно 0, 997, а в модели без учета «Сырья» равно 0,983. Это позволяет сделать вывод, что первая модель точнее отражает реальную связь.
При оценке значимости коэффициентов регрессии с помощью сравнения расчетного и табличного значений t – критерия Стьюдента стало очевидно, что следует выбрать модель «Материальных затрат». В данной модели tрасчетное найденных коэффициентов превышает tтабличное (см. таблицу 10) t – критерия Стьюдента, что позволяет сделать вывод, что коэффициенты регрессии в уравнении являются значимыми.
Тогда как в модели без учета «Сырья» два коэффициента регрессии ниже tтабличное ( см. таблицу 14), что говорит об отсутствии их значимости.
Проверку адекватности модели осуществляем уже только с моделью без учета «Материальных затрат».
Значение средней ошибки аппроксимации не превышает 12-15 %, что хорошо видно на рисунке 2, так как разница между предсказанным и исходным результирующим фактором Y очень небольшая.
Рассчитанный уровень значимости (см. таблицу 9) равен 1,2734E-10 < 0,05, это подтверждает значимость R2. Значение Fрасчетное – критерия Фишера больше Fтабличное, значит связь между признаками признается существенной.
Рисунок 2
Таким образом, получаем искомое уравнение регрессии:
Выводы: Выполнив данную работу по этапам, была построена экономико-математическая модель методом математической статистики на примере ОАО швейной фабрики «Березка». Модель имеет вид:
.Выбранные факторы Х1,Х2 и Х3 существенно влияют на У, что подтверждает правильность их включения в построенную модель.
Так как коэффициент детерминации R2 значим, то это свидетельствует о существенности связи между рассматриваемыми признаками.
Отсюда следует, что построенная модель эффективна.