Смекни!
smekni.com

Компьютерные 2d и 3d иллюстрации свойств геометрических фигур и тел при изучении геометрии в шко (стр. 3 из 3)

Бесплатная программа SketchUp позволяет создавать модели, совместимые с географическими ландшафтами ресурса Google Планета Земля, а также просматривать в интерактивном режиме на компьютере пользователя несколько тысяч архитектурных моделей, которые выложены на бесплатном постоянно пополняемом ресурсе Google Cities in Development (выдающиеся здания мира), созданные сообществом пользователей.

Трехмерная графика активно применяется в системах автоматизации проектных работ (САПР) для создания твердотельных элементов: зданий, деталей машин, механизмов, а также в архитектурной визуализации (сюда относится и так называемая "виртуальная археология"). Широко применяется 3D графика и в современных системах медицинской визуализации.

2.4 Применение 3d на уроках геометрии

С появлением 3dтехнологий у нас появилась возможность наглядно демонстрировать геометрические тела по средствам ИКТ. Изучение 4-мерных геометрических тел затруднительно в силу отсутствия возможности работать с их материальными моделями. Но становится возможным представить их по проекциям на гиперплоскость, демонстрируемым компьютерной программой. С помощью этой программы очень красиво может быть решена задача 4-мерного куба и других объемных геометрических тел. Трехмерные модели можно создавать не только для реализации их в специализированном программном обеспечении, но и создать анимированный видеоролик. Это позволит демонстрировать тела вращения, просмотр фигуры с различных ракурсов, как происходит сечение фигур и многие другие их свойства.

Преимущество видеоролика в том, что его можно демонстрировать и без компьютера. Достаточно иметь лишь телевизор и видеопроигрыватель. Так же этот ролик можно записать и на аналоговый носитель, если нет возможности воспроизвести его на цифровом проигрывателе, но есть видеомагнитофон. Именно поэтому я и решил создать именно видео файлы потому, что они просты и удобны в реализации.

Глава 3. Геометрические тела и их отображение

Геометрическое тело рассматривают как множество всех принадлежащих ему точек, связанных между собой и ограниченных в пространстве соответствующим образом. Оно может перемещаться в пространстве без изменения взаимного положения его элементов.

В инженерной графике рассматриваются одномерные тела (отрезок линии), двухмерные (плоская фигура, отсек поверхности), трехмерные (любая объемная фигура). Основными предметами изображения на плоских чертежах являются трехмерные геометрические тела, окружающие нас в реальном трехмерном пространстве.

Сложные геометрические тела можно рассматривать и как состоящие из более простых трехмерных фигур, которые определяются основными формообразующими элементами пространства — точками, линиями, поверхностями.

Геометрические тела на чертежах получают методом отображения (Рис. 1). Отображение геометрического тела — это понятие, в соответствии с которым каждой точке трехмерного пространства соответствует конкретная точка двухмерного пространства на чертеже. Отображение геометрических тел может быть выполнено на плоскость или какую-либо другую поверхность. В курсе инженерной графики рассматривается отображение геометрических тел на плоскость. Изображение геометрического тела на плоскости можно получить путем проецирования ее точек на эту плоскость.

Геометрическая связь между геометрическим телом, расположенным в пространстве, и его отображением на чертеже на плоскости устанавливаются по законам проецирования, которые базируются на принципе взаимно-однозначного соответствия.

Рис. 1 3D отображение геометрического тела.

3.1 Параллельные прямые

Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются. Прямые, которые не пересекаются и не лежат в одной плоскости, называются скрещивающимися (Рис. 2).

Теорема: через точку вне данной прямой можно провести прямую, параллельную данной и только одну

Рис. 2 3D отображение параллельных прямых.

3.2 Параллелепипед, его элементы

Если основание призмы - параллелограмм, то она называется параллелепипедом (Рис. 3). У параллелепипеда все грани - параллелограммы. Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

Параллелепипед бывает прямой и наклонный.

Прямой параллелепипед: основание - прямоугольник. У него все грани - прямоугольники. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом. Длины непараллельных ребер прямоугольный параллелепипед называются его линейными размерами (измерениями). У прямоугольный параллелепипед три измерения.

Рис. 3 3D отображение параллелепипеда.

3.3 Параллельные плоскости

Две плоскости называются параллельными, если они не пересекаются (Рис. 4).

Теорема: если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.

Рис.4 3D отображение параллельных плоскостей.

3.4 Перпендикулярные плоскости.

Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (Рис. 5).

Теорема: если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Рис. 5 3D отображение перпендикулярных плоскостей.

Заключение

ИКТ создает большие возможности в формировании персонального когнитивного стиля. В частности, посредством различных мультимедийных средств (2D и 3D графика, звук, гипертекстовая форма) становится возможной разработка учебных текстов с учетом различных стилей кодирования информации: предметно-практического, визуального, словесно-речевого, сенсорно-эмоционального, что, в конечном счете, способствует индивидуализации процесса обучения.

Говоря о практическом использования ИКТ в школе и вузе, обращает на себя внимание тот факт, что на сегодняшний день этот вопрос недостаточно исследован. Опрос, проведенный среди преподавателей математических дисциплин вузов Орла, Курска, Брянска, Железногорска, Тулы показал, что лишь 41,9% из них используют компьютерные средства в преподавании, а среди учителей Екатеринбурга и Омска эта доля составляет 23,7%. Как видим, исследование проводилось только по одному из двух направлений (т.е. либо в школе, либо в вузе). Хотелось бы отметить и тот факт, что в большинстве публикаций по вопросу использования ИКТ акцент ставится на отсутствие методического обеспечения существующих компьютерных средств. По-нашему мнению, следует обратить внимание как на количество, так и на качество уже имеющихся. Например, часто электронный учебник является просто копией «бумажного» варианта и содержит грубые ошибки в изображениях геометрических фигур.

Применение 3d технологий позволяет наглядно показать такие сложные элементы как преобразование одной фигуры в другую, и сечение одной или несколькими плоскостями что может быть наглядным примером для учащихся школ и вузов.

Модели фигур в трехмерном пространстве можно предоставлять как в программном виде(в какой либо программе) так и посредствам видеороликов. Преимущество видео в том, что его можно демонстрировать не только на компьютере но и по средствам простого видеопроигрывателе, а так же записать на аналоговые носители. Именно по этому я решил разработать свой проект так , чтобы его можно было представить в видео файлах.

В курсовой работе я постарался реализовать поставленные задачи, для этого:

· Было изучено содержание рассматриваемой темы, описанной в источниках различных авторов

· Обоснованно выбран программный продукт, с помощью которого и были созданы видеоролики.

Литература

1. Адамар, Ж. Элементарная геометрия. Часть вторая. Стереометрия. [Текст] / Ж. Адамар. - М.: Учпедгиз, 1948

2. Ильин, В. А. Аналитическая геометрия. [Текст] / В. А. Ильин, Э. Г. Позняк. - М.: Наука. Физматлит, 2003

3. Романычева, Э. Т. Инженерная и компьютерная графика [Текст] / Э. Т. Романычева, Т. Ю. Соколова, Г. Ф. Шандурина. – М.: ДМК Пресс, 2001

4. Большой энциклопедический словарь. Математика. [Текст] / - М.: Большая Российская энциклопедия, 1998

5. Ким Ли 3DStudioMAXдля дизайнера. Искусство трехмерной анимации [Текст] / Ким Ли. – М.: ДиаСофт, 2003

6. Ильиных, Д. В. Дидактическая компьютерная игра в процессе изучения правильных многогранников [Текст] / Д. В. Ильиных, Р. Ф. Мамалыга – Челябинск, ЧГПУ, 2006

7. Мамалыга, Р. Ф. Один из аспектов развития пространственного мышления [Текст] / Р. Ф. Мамалыга – Пермь, ПГПУ, 2004.

8. Материалы XIV Международной конференции «Математика. Компьютер. Образование». – Пущино, 2007

9. Компьютерная графика [Электронный ресурс]: Режим доступа: http://www.codenet.ru свободный

10. Самоучитель AUTODESK 3DS MAX 9 [Электронный ресурс]: Режим доступа: http://samouchka.net свободный