Смекни!
smekni.com

Естественный и искусственный интеллект (стр. 3 из 5)


10. 0 И 1.

Еще в 1943 году нейрофизиолог Уоррен Маккаллох, обладавший, философским складом ума и широким кругом интересов, в соавторстве с 18-летним математиком Уолтером Питтсом разработал теорию деятельности головного мозга. Эта теория и стала основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.

Исходя из исследований нейронов (основных активных клеток, составляющих нервную систему живых существ), Маккаллох и Питтс выдвинули гипотезу: нейроны можно рассматривать как устройства, оперирующие двоичными числами. Двоичные числа, состоящие из единиц и нолей, — рабочий инструмент так называемой Булевой логики. Сто с лишним лет назад английский математик Джордж Буль показал, что логические утверждения можно закодировать в виде единиц и нолей, где единица соответствует истинному высказыванию, а ноль — ложному, после чего ими можно оперировать как обычными числами. Позднее пионеры информатики поняли, что единица и ноль вполне соответствуют двум состояниям электрической цепи (включено/ выключено), поэтому двоичная система идеально подходит для электронных вычислительных устройств.

Маккаллох и Питтс предложили конструкцию сети из электронных нейронов, которая могла бы выполнять практически любые числовые или логические операции. А далее предположили, что такая сеть в состоянии обучаться, распознавать образы, обобщать, то есть обладает всеми чертами интеллекта.

Теории Маккаллоха—Питтса в сочетании с книгами Винера вызвали огромный интерес. В 40—60-е годы Кибернетики запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично паяя электронные компоненты моделей нейронов.

Из этого кибернетического (или нейро-модельного) подхода к машинному разуму сформировался так называемый восходящий метод — движение от простых аналогов нервной системы примитивных существ к нервной системе человека. Конечная цель виделась в создании самоорганизующейся системы, обучающейся машины — устройств, способных следить за окружающей обстановкой и с помощью обратной связи менять свое поведение, вести себя, как живой организм.

Однако такое движение не всегда целесообразно и возможно. Как заметил сам Уоррен Маккаллох. И дело не только во времени, но и в чисто физических ограничениях. Ведь даже модель нервной системы муравья состоит из 20 тысяч нейронов, а у человека их около 100 миллиардов. Фрэнка Розенблата все эти трудности, однако, не пугали. В конце 50-х он предложил модель электронного устройства — персептрона, который должен был бы имитировать процессы человеческого мышления. Персептрон передавал сигналы от "глаза" из фотоэлементов в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Два года спустя была продемонстрирована первая действующая машина Марк 1, которая могла научиться распознавать некоторые буквы, написанные на карточках, поднесенных к "глазам".

Персептрон Розенблата оказался высшим достижением восходящего метода создания искусственного интеллекта. Чтобы научить персептрон строить догадки на основе исходных предпосылок, в нем предусматривалась некое элементарное самопрограммирование.

Но недолго музыка играла: почву у сторонников восходящего метода выбили два профессора все того же Массачусетского Технологического Института — Минский и Пейперт, поначалу бывшие активными его приверженцами. В 1969 году они написали книгу, доказывая математически, что персептроны принципиально не в состоянии выполнять многие из обещанных функций: не то что читать, слушать и понимать полученную информацию — они никогда не смогут распознавать предмет, частично заслоненный другим. То есть, глядя на торчащий из-за кресла кошачий хвост, такая машина никогда не догадается, кому он принадлежит. Правительство США финансировать это направление перестало.

Правда, затем Минский опять "перековался" и вернулся в стан "восходящих". И даже покаялся: теперь он считал, что для реального прорыва вперед в создании разумных машин потребуется устройство, во многом похожее на разгромленный им персептрон.

Суммируя, можно привести слова члена Совета Российской ассоциации искусственного интеллекта В.Б.Тарасова о том, что на первом этапе — в 60—90-е годы — главной была "инженерия знаний": интеллектуальные системы понимались как системы, основанные на знаниях. Иначе говоря, основное внимание уделялось вопросам работы с информацией — извлечению знаний, их обработке, классификации представлению и т.д. На этой основе появляется возможность создания различных "решателей" задач.

Самыми первыми интеллектуальными задачами, которые стали решать при помощи электронных вычислительных машин, были логические игры (шашки, шахматы), доказательство теорем. Американский кибернетик А.Самуэль составил для вычислительной машины программу, которая позволяла ей играть в шашки, причем в ходе игры машина обучалась (или создавала впечатление, что обучается), улучшая свои навыки на основе накопленного опыта. В 1962 году эта программа сразилась с Р. Нили, сильнейшим шашистом в США, и победила.

Ярким примером сложной интеллектуальной игры до недавнего времени были шахматы. Еще в 1974 году состоялся международный шахматный турнир программ для электронных вычислительных машин. Победу в нем одержала советская программа "Каисса".

Почему "до недавнего времени"? События показали, что, несмотря на сложность шахмат и невозможность полного перебора ходов, само увеличение этого перебора резко увеличивает и шансы на победу. К примеру, компьютер IBM, победивший Каспарова, имел 256 процессоров, каждый — с 4 Гб дисковой памяти и 128 Мб оперативной. Весь этот комплекс просчитывал более 100 миллионов ходов в секунду. Именно шахматных ходов, которые должны быть сгенерированы и для которых просчитаны оценочные функции.

Сейчас одной из наиболее интересных интеллектуальных задач, имеющих огромное прикладное значение, является обучение распознаванию образов и ситуаций. Это сулит широкое практическое использование — читающие автоматы, системы, ставящие медицинские диагнозы, проводящие криминалистическую экспертизу и т.п., а также роботы, способные распознавать и анализировать сложные сенсорные ситуации.

Проблема обучения распознаванию тесно связана с другой — проблемой перевода с языка на язык, а также обучения машины языку. Обработав и классифицировав основные грамматические правила и приемы пользования словарем, можно создать вполне удовлетворительный алгоритм для перевода, скажем, научного или делового текста. Для некоторых языков такие системы были созданы еще в конце 60-х годов. Однако чтобы связно перевести большой разговорный текст, необходимо понимать его смысл. Работы над такими программами ведутся уже давно, но до полного успеха еще далеко.

Что же до моделирования логического мышления, хорошей задачей здесь может служить автоматизация доказательства теорем. Большой интерес представляла интеллектуальная программа американского математика Хао Ванга. С этой программой машина IBM-704 всего за три минуты вывела 220 относительно простых лемм и теорем, а затем за восемь с половиной минут выдала доказательства еще 130 более сложных теорем, часть их которых еще не была выведена живыми математиками.

В начале 70-х появились логические экспертные системы, основанные на логических моделях "Если А, то В..." и знаниях, предоставляемых экспертами в той или иной области. В программу закладывали информацию, полученную путем детального опроса экспертов в той или иной области (например, на основании каких признаков врач ставит свой диагноз).

Такая система могла не только быстро и эффективно сделать вывод, но и объяснить свои действия, поэтому считалась вполне интеллектуальной.

Начался бум экспертных систем. Практически во всех областях человеческих знаний были созданы такие системы — и практически везде они оказались недостаточно эффективны. Реальная жизнь оказалась сложнее инструкций, хороший специалист принимает решение чисто интуитивно.

К началу 80-х появились системы нечеткой логики. В отличие от традиционных систем, основанных на двоичных множествах ("да"—"нет", "истинно"—"ложно"), системы нечеткой логики оперируют бесконечным множеством значений (часто, редко, близко, далеко...) и представляют собой систему приближенных вычислений.

Современный вычислительный интеллект, основанный на "нечеткой" логике, оказался лучше приспособлен к жизни: он успешно адаптируется к изменениям внешней среды, меняя свою логику в зависимости от изменения целей системы. Подобные системы дешевы: "нечеткий" чип стоит сегодня порядка 5 долларов. А в результате стиральная машина сама, определив состав ткани заложенного в барабан белья, выбирает режим стирки, а утюг — оптимальную температуру глажения.

В 90-е годы для самообучения интеллектуальных систем была создана мощная вычислительная система поиска оптимальных решений — генетический алгоритм. Используя эволюционные модели: естественный отбор, закрепление лучших наследственных признаков, а также метод проб и ошибок — интеллектуальные системы из множества возможных решений задачи находят наилучшее.

Интеллектуальные системы последнего поколения представляют собой вычислительный интеллект и используют гибридный подход, при котором в разных частях системы работают разные вычислительные модели, которые активно взаимодействуют между собой.


11.СОВРЕМЕННЫЙ ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ.

В настоящий момент в создании искусственного интеллекта наблюдается вовлечение многих предметных областей, имеющих хоть какое-то отношение к ИИ. Многие подходы были опробованы, но к возникновению искусственного разума ни одна исследовательская группа пока так и не подошла.