Применение
Силицированию подвергают детали, используемые в оборудовании химической, бумажной и нефтяной промышленности (валики насосов, трубопроводы, арматура, гайки, болты и т.д.). Силицирование широко применяют для повышения сопротивления окислению при высоких температурах сплавов молибдена. Так же силицированию подвергают детали из карбида кремния (SiC). Пример: электрические нагреватели из карбида кремния, подшипники скольжения для нефтяной и химической промышленности, конструкционные детали и др.
Хромирование
Хромирование — диффузионное насыщение поверхности стальных изделий хромом, либо процесс осаждения на поверхность детали слоя хрома из электролита под действием электрического тока. Слой хрома может наноситься для декоративных целей, для обеспечения защиты от коррозии, или для увеличения твердости поверхности.
Описание процесса
Деталь, подвергаемая хромированию, как правило, проходит через следующие шаги:
-Очистка для удаления сильных загрязнений.
-Тонкая очистка, для удаления следов загрязнений.
-Предварительная подготовка (варьируется в зависимости от материала основы).
-Помещение в ванну с насыщенным раствором и выравнивание температуры.
-Подключение тока и выдержка до получения нужной толщины
Используемые при хромировании реагенты и отходы процесса чрезвычайно токсичны, в большинстве стран этот процесс находится под строгим регулированием.
Промышленное применение
В промышленности хромирование используется для снижения трения, повышения износостойкости, повышения коррозионной стойкости. Этот процесс обеспечивает повышенную устойчивость стали к газовой коррозии (окалиностойкость) при температуре до 800° С, высокую коррозионную стойкость в таких средах, как вода, морская вода и азотная кислота. Хромирование сталей содержащих свыше 0,3-0,4 %С, повышает также твёрдость и износостойкость. Твердость хрома составляет от 66 до 70 HRC. Толщина хромового покрытия обычно составляет от 0.075 до 0.25 мм, но встречаются и более толстые, и более тонкие слои. Поверхностные дефекты при хромировании усиливаются и поверхность подлежит последующей обработке, так как хромирование не дает эффекта выравнивания.
Хромирование используют для деталей паросилового оборудования, пароводяной арматуры, клапанов, вентилей патрубков, а также деталей, работающих на износ в агрессивных средах.
Технология
Типичными являются следующие растворы для хромирования:
1.Шестивалентный хром, чей основной ингредиент — хромовый ангидрид.
2.Трехвалентный хром, чей основной ингредиент — Сульфат хрома или хлорид хрома. Ванны с трехвалентным хромом используются довольно редко из-за ограничений, накладываемых на цвет, яркость и толщину покрытия.
Типичное содержание ванны с шестивалентным хромом:
Хромовая кислота: 225—300 g/l
Серная кислота: 2.25—3.0 g/l,
Температура: 45 — 60 °C
Сила тока: 1.55—3.10 кА/кв.м. DC
Аноды: свинец, содержащий до 7 % олова или сурьмы
Ограничения
После того, как шестивалентный хром в 90-е годы ХХ века был признан канцерогеном, в различных странах началась разработка методик его замены. Так, в США и Канаде начала работу Hard Chrome Alternetive team, HCAT. В 2003 году была принята и в 2006 году вступила в силу директива RoHS, которая существенно ограничила применение хромирования в Европе. Результатом стала замена хромирования на другие способы обработки, например, высокоскоростное газопламенное напыление во многих применениях.
Химико-термическая обработка металлов
Химико-термическая обработка металлов — Химико-термической обработкой (ХТО) называется термическая обработка, заключающаяся в сочетании термического и химического воздействия с целью изменения состава, структуры и свойств поверхностного слоя стали.
Описание процесса
Процесс химико-термической обработки представляет собой многоступенчатый процесс, который включает в себя три последовательные стадии:
1. Образование активных атомов в насыщающей среде рядом с поверхностью или непосредственно на поверхности металла. Мощность диффузионного потока, т. е. количество образующихся в единицу времени активных атомов, зависит от состава и агрегатного состояния насыщающей среды, которая может быть твердой, жидкой или газообразной, взаимодействия отдельных составляющих между собой, давления, температуры и химического состава стали.
2. Адсорбция образовавшихся активных атомов насыщаемой поверхностью. Адсорбция является сложным процессом, который протекает на поверхности насыщения нестационарным образом. Различают физическую (обратимую) адсорбцию и химическую адсорбцию (хемосорбцию). При химико-термической обработке эти типы адсорбции накладываются друг на друга. Физическая адсорбция приводит к сцеплению адсорбированных атомов насыщающего элемента (адсорбата) с образовываемой поверхностью (адсорбентом) благодаря действию Ван-дер-Ваальсовых сил притяжения, и для нее характерна легкая обратимость процесса адсорбции — десорбция. При хемосорбции происходит взаимодействие между атомами адсорбата и адсорбента, которое по своему характеру и силе близко к химическому.
3. Диффузия — перемещение адсорбированных атомов в решетке обрабатываемого металла. Процесс диффузии возможен только при наличии растворимости диффундирующего элемента в обрабатываемом материале и достаточно высокой температуре, обеспечивающей энергию необходимую для протекания процесса.
Толщина диффузионного слоя, а следовательно и толщина упрочненного слоя поверхности изделия, является наиболее важной характеристикой химико-термической обработки. Толщина слоя определяется рядом таких факторов, как температура насыщения, продолжительность процесса насыщения, состав стали, т. е. содержание в ней тех или иных легирующих элементов, градиент концентраций насыщаемого элемента между поверхностью изделия и в глубине насыщаемого слоя.
Классификация по внедряемым элементам
Технологии мононасыщения
-Цементация — насыщение атомами углерода
-Азотирование — насыщение атомами азота
-Борирование — насыщение атомами бора
-Алитирование — насыщение атомами алюминия
-Сульфидирование — насыщение атомами серы
Технологии совместного насыщения
-Нитроцементация — насыщение атомами преимущественно углерода и в меньшей степени азота.
-Карбонитрирование (цианирование, карбонитрация) — насыщение атомами преимущественно азота и в меньшей степени углерода
-Алюмосилицирование — насыщение атомами алюминия и кремния
Классификация по методу насыщения
-Насыщение из газовой фазы
-Насыщение из порошков
-Насыщение из расплавов солей
-Ионно-плазменные методы насыщения
Применение
Упрочняющая обработка
Защита от износа
-Цементация
-Нитроцементация
-Азотирование
-Карбонитрирование (цианирование, карбонитрация)
-Борирование
Антикоррозионная обработка
Защита от коррозии
-Азотирование
-Карбонитрирование (цианирование, карбонитрация)
-Алитирование
-Алюмосилицирование