Содержание:
1. Способы построения циклических вычислительных процессов в программах.
2. В компьютер вводится N вещественных чисел. Составить программу, выдающую на экран среднее арифметическое значение этого набора.
Введение
Циклические программы используются практически в любом программном обеспечении. При этом циклы могут быть явными и неявными. В частности неявный цикл присутствует в обработчиках прерываний, которые фактически работают в бесконечном цикле, чье тело инициируется прерыванием. Циклическими являются и подпрограммы - оконные функции приложений Windows. Далее рассматриваются программы с циклом, тело которого содержит функциональные модули.
Циклический процесс - это вычислительный процесс, в котором многократно выполняются вычисления по одним и тем же формулам при различных значениях аргумента.
Программы, реализующие циклический процесс называются циклическими программами.
В организации цикла можно выделить следующие этапы:
подготовка (инициализация) цикла (И);
выполнение вычислений цикла (тело цикла) (Т);
модификация параметров (М);
проверка условия окончания цикла (У).
Порядок выполнения этих этапов, например, Т и М, может изменяться. В зависимости от расположения проверки условия окончания цикла различают циклы с нижним и верхним окончаниями. Для цикла с нижним окончанием тело цикла выполняется как минимум один раз, так как сначала производятся вычисления, а затем проверяется условие выхода из цикла.
В случае цикла с верхним окончанием тело цикла может не выполниться ни разу в случае, если сразу соблюдается условие выхода.
Цикл называется детерминированным, если число повторений тела цикла заранее известно или определено. Цикл называется итерационным, если число повторений тела цикла заранее неизвестно, а зависит от значений параметров (некоторых переменных), участвующих в вычислениях.
Тело цикла - это многократно повторяющийся участок программы.
Параметр цикла - это переменная, которая принимает новые значения при каждом повторении цикла (циклы бывают простые и сложные).
Общий вид цикла n раз
В общем виде цикл n раз записывается так:
нц число повторений раз
| тело цикла (последовательность команд)
кц
Служебное слово нц (начало цикла) и кц (конец цикла) пишутся строго одно под другим и соединяются вертикальной чертой. Правее этой черты записывается повторяемая последовательность команд (тело цикла).
Число повторений – произвольное целое число.
При выполнении алгоритма последовательность команд в теле цикла повторяется указанное число раз. Правила алгоритмического языка допускают задание любого целого числа повторений. Оно может быть нулевым и даже отрицательным. Эти случаи не считаются ошибочными, просто тело цикла не будет выполнено ни разу, а компьютер сразу перейдет к выполнению команд, записанных после кц
Общий вид цикла пока
В общем виде цикл пока записывается так:
нц пока условие
| тело цикла (последовательность команд)
кц
При выполнении цикла компьютер повторяет следующие действия:
а) проверяет записанное после служебного слова пока условие;
б) если условие не соблюдается, то выполнение цикла завершается и компьютер начинает выполнять команды, записанные после кц. Если же условие соблюдается, то компьютер выполняет тело цикла, снова проверяет условие и т.д.
Общий вид цикла для
нц для i от i1 до i2
| тело цикла (последовательность команд)
кц
Здесь i – имя величины целого типа, i1, i2 – произвольные целые числа или выражения с целыми значениями. Тело цикла последовательно выполняется для i = i1, i = i1 + 1, i1 + 2, …i = i2.
Правила алгоритмического языка допускают задание любых целых i1, i2. в частности, i2 может быть меньше i1. этот случай не считается ошибочным – просто тело цикла не будет выполнено ни разу, а компьютер сразу перейдет к выполнению команд, записанных после кц.
Цикл n раз и цикл пока
Циклы n раз и пока оформляются в алгоритмическом языке почти одинаково. Это не удивительно, ведь обе эти команды задают цикл – повторяющуюся последовательность команд. Служебные слова нц и кц указывают, что исполняется цикл, а заголовок цикла задает конкретный механизм его выполнения.
Однако у этих двух циклов есть одно существенное отличие. Начиная выполнять цикл n раз, компьютер знает, сколько раз придется повторить тело цикла. При исполнении цикла пока это не так: компьютер каждый раз проверяет условие цикла и не может заранее определить, когда выполнение закончится. Узнать количество повторений цикла пока можно только после того, как цикл завершен.
Отсюда ясно, в каких случаях какой цикл следует использовать. Если к моменту начала цикла количество повторений известно, удобно воспользоваться циклом n раз. Если же количество повторений заранее определить нельзя, необходим цикл пока.
Например, программа автоматического управления имеет структуру, изображенную на рис. 1. Модули, входящие в цикл (а также модули обработки прерываний), с одним входом и одним выходом каждый, как правило, имеют характерную особенность: модули содержат статические переменные, которым присваивается значение в текущем цикле, а анализ этих переменных выполняется в следующем цикле. Таким образом, упомянутые переменные характеризуют состояние модуля на конец текущего или начало следующего цикла программы. В дальнейшем будем рассматривать только такие модули циклических программ и обозначать их кратко МЦП.
Рис.1. Типовая структура управляющей программы с бесконечным циклом.
МЦП имеют разнообразную структуру, сложность которой необходимо оценивать по специальным критериям. В.В.Липаевым предложен удобный и объективный критерий сложности программных модулей, а именно: число и суммарная длина путей в управляющем графе модуля [1]. При этом учитываются только условные операторы и операторы выбора. Однако этого критерия явно недостаточно для МЦП со статической памятью, ибо при анализе МЦП необходимо помнить значения всех статических переменных, установленные в предшествующем цикле. Помимо этого, никаких рекомендаций по стандартизации алгоритмов и программ, кроме давно известного структурного программирования [2] на общеупотребительных языках программирования типа Си и Паскаль - нет. В данной статье предлагается восполнить эти пробелы применительно к МЦП.
2. Фрагменты модулей циклических программ
Двухполюсным фрагментом, или просто фрагментом, будем считать участок программы с одним входом и одним выходом (включая операторы циклов) в предположении, что рассматриваемые МЦП структурированы. Простейший фрагмент включает единственный оператор. Последовательность фрагментов также является фрагментом. МЦП в свою очередь является фрагментом и состоит из последовательности фрагментов.
В [3] предложен метод независимых фрагментов для синтеза структуры модулей, реализующих таблицы решений. При этом независимым считается такой фрагмент, который можно вставить в любом месте последовательности фрагментов модуля. Независимость местоположения такого фрагмента обусловлена тем, что анализируемые в нем данные не формируются в указанной последовательности фрагментов, а формируемые в независимом фрагменте данные не анализируются в данной последовательности фрагментов. Поэтому независимые фрагменты могут выполняться параллельно (псевдопараллельно). На рис. 2 показаны возможные варианты реализации модуля с двумя независимыми фрагментами. В вариантах “а” и “б” фрагменты переставлены местами без искажения существа программы; в варианте “в” фрагменты реализуются параллельно.
Рис.2. Варианты реализации модуля с независимыми фрагментами:
а) и б) - последовательная реализация,
в) - параллельная реализация: двойная горизонтальная линия обозначает распараллеливание программы, жирная горизонтальная черта обозначает завершение параллельных процессов.
Зависимым фрагментом является такой, местоположение которого зависит от местоположения другого (других) фрагмента в модуле. Будем различать сверху- и снизу зависимые фрагменты. Сверху-зависимый фрагмент должен быть расположен всегда ниже некоторого фрагмента, в котором формируются переменные, используемые в данном (зависимом) фрагменте. Снизу-зависимый фрагмент должен размещаться всегда выше фрагмента, в котором используются переменные, формируемые в данном фрагменте. Два зависимых фрагмента, один из которых является сверху зависимым от второго, а второй снизу зависимым от первого, будем называть взаимно зависимыми фрагментами. Их нельзя менять местами и нельзя реализовывать параллельно. На рис. 3 приведен пример модуля с взаимно зависимыми фрагментами. Между взаимно зависимыми фрагментами могут находиться другие, зависимые или не зависимые от них. Рис.3. Модуль с зависимыми фрагментами.Фиксированным будем называть зависимый фрагмент, местоположение которого в модуле строго определено. Например, в модуле распознавания символа, введенного с клавиатуры, первым должен быть снизу зависимый фрагмент непосредственно ввода символа. Операторы “начало” и “конец” модуля есть фиксированные фрагменты.
Абсолютно независимых фрагментов не существует хотя бы потому, что в любом модуле есть упомянутые фиксированные фрагменты начала и конца. Поэтому независимый фрагмент, в общем случае, имеет ограниченную двумя взаимно зависимыми фрагментами область возможного местоположения. То есть более строгое определение независимого фрагмента звучит следующим образом: независимым относительно двух фиксированных фрагментов будем называть такой фрагмент, который может быть размещен в любом месте последовательности фрагментов, ограниченной сверху и снизу указанными фиксированными фрагментами.