Смекни!
smekni.com

Система распознавания объектов в миллиметровом диапазоне радиоволн (стр. 8 из 23)

- по количеству каналов приема: одноканальные и двухканальные (с приемом отраженных сигналов на двух ортогональных поляризациях);

- основанные на оптимизации ПП антенн: при излучении и приеме, только при излучении, только при приеме, при совпадении поляризациях излучения и приема;

- основанные на выборе постоянных ПП антенн и с управляемой поляризацией (адаптивные);

- когерентные и некогерентные;

- по типам зондирующих сигналов:

- монополяризованные при постоянных ПП антенн

- с использованием поляризационно – модулированных сигналов, для РЛС с непрерывным и импульсным излучением;

- по количеству антенн: с общей антенной на излучение и прием, и с различными передающей и приемной антеннами;

- ориентированные на типы помех: от подстилающей поверхности, гидрометров, дипольных отражателей, внутренних неполяризованных шумов, активных помех;

- с совмещением ПС с другими видами селекции;

- по критериям оптимизации: максимизация отношения сигнал / помеха, минимизация мощности помехи, оптимизация критерии теории статистических решений.

Изложенные факторы позволяют классифицировать известные методы поляризационной селекции. Результаты анализа представлены на рис. 1.5. Предложенная классификация может служить для рассмотрения известных методов по классификационным группам.

Рис. 1.5. Классификация методов поляризационной селекции


1.4.2 Методы с выбором постоянных ПП антенн при излучении и приёме

Для данной группы методов характерно использование нескольких подходов:

1) цель и помеха характеризуются стабильным ПМР;

2) цель и помеха являются флуктуирующими и описываются ковариационной матрицей рассеяния (КМР) или матрицей Мюллера.

При этом оптимизироваться могут ПП приёмной антенны при фиксированной поляризации на излучение, ПП передающей антенны, ПП передающей и приёмной антенны, ПП антенны, одинаковые на излучение и приём. Критерием оптимизации может являться максимизация ОСП и минимизация мощности помехи. Методы ПС, основанные на выборе постоянных ПП антенн при излучении и приёме детально рассмотрены в работах [7,11,13-15,30], анализ которых показал:

- использование в качестве моделей МНЦ стабильных ПМР цели и помехи малоприемлемо для радиолокационной практики;

- выражений, определяющих оптимальные поляризации излучения

и приёма для минимизации мощности флуктуирующей помехи,

в явном виде не получено;

- раздельная оптимизация поляризационных параметров антенн при излучении и приёме может приводить к потере эффективности селекции.

Таким образом, методы, основанные на выборе постоянных ПП антенн, малопригодны для практического использования, так как они основаны на предположении об известности и неизменности ПХ целей и помех, в то время, как ПХ реальных объектов и помех, как правило, неизвестны и изменчивы. Данные методы позволяют лишь частично использовать ПХ для селекции надводных объектов, как, например, применение круговой поляризации на излучение и приём для подавления помех от осадков. Однако эти методы характеризуют потенциальные возможности ПС при оптимизации ПП антенн, поэтому эффективность разрабатываемых методов ПС, пригодных для практической реализации, может оцениваться по сравнению с рассмотренными методами, а методика расчёта оптимальных поляризаций может облегчить синтез устройств ПС, эквивалентных методам с управляемыми ПП антенн.

1.4.3 Методы с двуканальным приёмным устройством

Известны методы ПС, основанные на излучении зондирующих сигналов с одной фиксированной поляризацией и обработке двух ортогонально поляризованных компонент (ОПК) отражённого сигнала [3,4]. Неадаптивные двухканальные методы основываются на некогерентном объединении сигналов двух каналов, для селекции используются различия в статистике двух целей, устанавливаемые по выборкам отражённых сигналов путём усреднения их параметров.

Так, например, система, имеющая фиксированную круговую поляризацию при передаче и двухканальное приёмное устройство в качестве средства уменьшения потерь мощности сигнала, отражённого от цели, в секторах, свободных от осадков, [18] позволяет получить выигрыш при обнаружении до 4 дБ по сравнению со случаем излучения и приёма линейной поляризации (традиционный случай) за счёт суммирования мощности выборочных статистик, определяемых последетекторным интегрированием. Объединение огибающих основной и кроссовых компонент ОПК отражённого сигнала [19] с оптимальным весовым коэффициентом позволяет повысить качество обнаружения малоконтрастной точечной цели на фоне подстилающей поверхности. Улучшение в ОСП по сравнению с одноканальным методом может достигать при этом 5…15 дБ в зависимости от различий степени деполяризации цели и помехи и коэффициентов корреляции между ОПК, которые на практике могут быть неизвестны, так как различны для различных целей и типов подстилающей поверхности. Таким образом, в качестве одного из направлений дальнейших исследований целесообразно принять принцип двухканального приёма ОПК отражённых сигналов с их последующей весовой обработкой.

В работе Лонга [20] описано устройство подавления помех от земной и морской поверхности, также использующее различия огибающих отражённых сигналов, принятых по двум ортогональным каналам. Принцип действия устройства основывается на том, что для поляризационно–изотропных целей отношение основных элементов ПМР в линейном ПБ близко к единице, а для выборок помехи от земной поверхности или близко к нулю, или много больше единицы. Устройство содержит два видеоканала раздельного приёма горизонтальной и вертикальной ОПК. Их сигналы подаются на входы сумматора и компаратора, выходные сигналы которых управляют вентилем. Сигнал с выхода устройства выдаётся только в случае, если амплитудное соотношение ОПК близко к единице. Зондирующий сигнал ориентирован под 450 по отношению к ПБ приёмной антенны. Фазовые различия ПМР цели и помехи не используются, поскольку предполагаются неизвестными. Данный подход также относится к некогерентным методам. Целесообразно в дальнейшем рассмотреть возможности некогерентных методов поляризационной селекции.

В [7] предложен метод обработки, использующий различия в когерентности цели и помехи, которая проявляется во временной когерентности разности фаз одновременно принимаемых ОПК (рис. 1.6). Цели выделяются на фоне МО, если за период наблюдения фазовый сдвиг более или менее постоянен для МО и изменяется для сигналов от цели. Эффективность данного метода экспериментально не оценивалась. Структура такой системы (рис. 1.6) аналогична системам с череспериодной компенсацией в системах СДЦ. А в работе [23] показано, что одновременная обработка двух ортогонально – поляризованных сигналов позволяет улучшить разрешение целей по частоте Доплера. Таким образом, предполагается целесообразным рассмотреть в дальнейшем возможность совмещения поляризационной и доплеровской селекций.


Рис. 1.6. Структура поляризационного выделителя сигналов

1.4.4 Методы ПС с использованием поляризационной модуляции зондирующего сигнала

Известны [4] методы с использованием так называемого поляризационного сканирования, при котором поляризация антенн (на передачу и приём) периодически изменяется по определенному закону. При облучении цели на фиксированной поляризации в отраженном сигнале содержится информация только об одном элементе главной диагонали ПМР, использование поляризационного сканирования позволяет повысить качество информации. Например [4], если поляризация антенны (общая на передачу и прием) периодически изменяется так, что точка на сфере Пуанкаре, соответствующая поляризации антенны движется по окружности большого круга (плоскость поляризации вращается с частотой

), то на выходе приемной антенны интенсивность отраженного сигнала имеет вид:

(1.89)

откуда следует, что амплитуды спектральных компонент содержат информацию об элементах главной диагонали ПМР (дисперсии

, вещественной части взаимного коэффициента корреляции
). Если помеха изотропна
, а цель неизотропна, то использование гармонической компоненты
позволяет селектировать неизотропные цели на фоне изотропной помехи. Рассмотренный выше метод впервые был предложен в [22] для селекции целей на фоне взволнованной морской поверхности. Следует отметить противоречие метода Лонга, рассмотренного в [12], и метода поляризационного сканирования [22] для селекции целей на фоне подстилающей поверхности. Лонг исходит из того, что цели изотропны, а поверхность – нет, а использование метода поляризационного сканирования основано на противоположном предположении.

Известен ряд методов, основанных на двухпозиционной поляризационной манипуляции с приемом на антенну, ПП которой совпадает с ПП на излучение. Эти методы позволяют ограничиться одноканальным приёмным устройством. В [24] показано, что для выделения сигналов, отраженных от целей на фоне помех, можно использовать как череспериодную поляризационную манипуляцию, так и внутриимпульсную поляризационную манипуляцию при соответствующей одноканальной обработке импульсных сигналов. Эффективность селекции зависит от того, насколько удачно выбраны поляризации излучения и приема РЛС, которые могут уточняться с увеличением экспериментальных данных. Достоинством данных методов является то, что возможность селекции появляется при ограниченных априорных данных о ПХ целей и помех, так как для обработки могут использоваться огибающие двух принятых сигналов при неизвестных фазах.