Смекни!
smekni.com

Обзор процессоров и шин ПВМ начиная с 386 машин (стр. 3 из 8)

данных в процессор. Наоборот, выходной порт представляет собой

приемник данных ( например, регистр), который избирательным

образом подключается к шине данных процессора. Будучи выбран,

выходной порт принимает слово данных из микропроцессора.

Процессор должен иметь возможность координировать скорость

своей работы со скоростью работы внешнего устройства, с кото-

рым он обменивается информацией. В противном случае может по-

лучиться, что входной порт начнет пересылать данные еще до то-

го как, процессор их затребует, и процесс пересылки данных на-

ложится на какой-то другой процесс в ЦП. Как уже отмечалось,

эта координация работы двух устройств носит название "рукопо-

жатия", или квитирования.

Теперь подробнее остановимся на режимах работы портов вво-

да-вывода. Существуют три вида взаимодействия процессора с

портами ввода-вывода: программное управление, режим прерываний

и прямой доступ к памяти (ПДП).

Программно-управляемый ввод-вывод инициируется процессором,

который выполняет программу, управляющую работой внешнего уст-

ройства. Режим прерываний отличается тем, что инициатором вво-

да-вывода является внешнее устройство. Устройство, подключен-

ное к выводу прерываний процессора, повышает уровень сигнала

на этом выводе (или в зависимости от типа процессора понижает

- 14 -

его). В ответ процессор, закончив выполнение текущей команды,

сохраняет содержимое программного счетчика в соответствующем

стеке и переходит на выполнение программы, называемой програм-

мой обработки прерываний, чтобы завершить передачу данных.

ПДП тоже инициируется устройством. Передача данных между

памятью и устройством ввода-вывода осуществляется без вмеша-

тельства процессора. Как правило, для организации ПДП исполь-

зуются контроллеры ПДП, выполненные в виде интегральных схем.

3.5 Униварсальный синхронно-асинхронный

приемопередатчик

Микропроцессор взаимодействует с перифирийными устройства-

ми, принимающими и передающими данные в последовательной фор-

ме. В процессе этого взаимодействия процессор должен выполнять

преобразование параллельного кода в последовательный, а также

последовательного в параллельный.

Чаще всего пересылка данных между процессором и периферий-

ными устройствами выполняются асинхронно. Другими словами,

устройство может передавать данные в любой момент времени. Ес-

ли данные не передаются, устройство посылает просто биты мар-

кера, обычно высокий уровень сигнала, что дает возможность не-

медленно обнаружить любой разрыв цепи передачи. Если устройс-

тво готово передавать данные, передатчик посылает нулевой бит,

обозначающий начало посылки. За этим нулевым битом следуют

данные, затем бит четности и , наконец, один или два стоп-би-

та. Закончив передачу, отправитель продолжает посылать высокий

уровень сигнала в знак того, что данные отсутствуют.

Для удобства проектирования интерфейса процессора с уст-

- 15 -

ройствами последовательного ввода-вывода (как синхронными, так

и асинхронными) разработаны микросхемы универсальных синхрон-

но-асинхронных приемопередатчиков (УСАПП). В состав УСАПП вхо-

дят функционирующие независимо секции приемника-передатчика.

Типичный УСАПП изображен на рис. 4

Рисунок 4 расположен на следующей странице.

- 16 -

Разреше- От триггера

ние по- 8 7 6 5 4 3 2 1 " Буфер

лучения Данные передатчика

данных ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑ свободен"

──┬─── ├─┴─┴─┴─┴─┴─┴─┤ ж е а б в г д ─────┬─────

└─────┤ Вентили И │ │ │ ‑ ‑ ‑ ‑ ‑ │

├─┬─┬─┬─┬─┬─┬─┤ │ │ ┌┴──┴──┴──┴──┴┐ │

├─┴─┴─┴─┴─┴─┴─┤ ┌───­───┐ └──_│ Вентили И │ │

│ Буферный ре-│ │ R ├─────_│ │_─────┘

│ гистр прием-│_─┬_│Триггер│ └─┬───┬────┬──┘

│ ника │ │ │"Данные│ │ │ │

└─────────────┘ │ │готовы"│ ┌─┴───┴────┴──┐

‑ │ │S │ │ Регистр сос-│_──────┐

└────────┐ │ └┬──────┘ │ тояния │ │

Биты управления │ │ └────────────_└─────────────┘ │

от регистра состояния│ └────────────────────────┐ │

­ └─────────────┐ ┌──────┴────┐ │

├──────────────────────┐ └──────┤ Сдвиговый ├────────┘

┌────┴────┐ ┌────┴─────┐ │ регистр │

│ Логика ├───────────_│ Логика ├─────_│ приемника │

│проверки │ │ проверки │ │СР │

│паритета │ │ границы │ └───────────┘

│ │ │ кадра │ ‑

└───‑─────┘ └──────────┘ │

┌───┴─────┐ ┌──────────┐ │

│Проверка │ │Синхрони- │ │

│стартово-│ │зирующий │ │

│го бита │_───────────┤генератор ├───────┘

- 17 -

‑ Последовательный вход ‑ Частота 16хТ Рис. 4

Буквами обозначено: а - Данные готовы; б - Наложение; в - Ошибка

кадра; г - Ошибка четности; д - Буфер пере-

датчика свободен; е - Разрешение чтения слова

состояния; ж - Сброс триггера " Данные гото-

вы"

УСАПП заключен в корпус с 40 выводами и является дуплексным

устройством (т. е. может передавать и принимать одновременно).

Он выполняет логическое форматирование посылок. Для подключе-

ния УСАПП могут потребоваться дополнительные схемы, однако нет

необходимости в общем тактовом генераторе, синхронизирующем

УСАПП и то устройство, с которым установлена связь. В передат-

чике УСАПП предусмотрена двойная буферизация, поэтому следую-

щий байт данных может приниматься из процессора, как только

текущий байт подготовлен для передачи.

Выпускаются микросхемы УСАПП со скоростями передачи до 200

Кбод. Скорость работы передатчика и приемника (не обязательно

одинаковые) устанавливаются с помощью внешних генераторов,

частота которых должна в 16 раз превышать требуемую скорость

передачи. Сигналы от внешних генераторов поступают на раздель-

ные тактовые входы приемника и передатчика.

Обычно и микропроцессор, и устройства ввода-вывода подклю-

чаются к своим УСАПП параллельно. Между УСАПП действует после-

довательная связь (например по стандарту RS-232C).

- 18 -

4. MULTIBUS

Структура магистрали, обеспечивающей сопряжение всех аппа-

ратных средств, является важнейшим элементом вычислительной

системы. Магистраль позволяет многочисленным компонентам сис-

темы взаимодействовать друг с другом. Кроме того, в структуру

магистрали заложены возможности возбуждения прерываний, ПДП,

обмена данными с памятью и устройствами ввода-вывода и т. д.

Магистраль общего назначения MULTIBUS фирмы Intel представ-

ляет собой коммуникационный канал, позволяющий координировать

работу самых разнообразных вычислительных модулей. Основой ко-

ординации служит назначение модуля системы MULTIBUS атрибутов

ведущего и ведомого.

4.1 Магистрали MULTIBUS I/II.

Одним из наиболее важных элементов вычислительной системы

является структура системной магистрали, осуществляющей сопря-

жение всех аппаратных средств. Системная магистраль обеспечи-

вает взаимодействие друг с другом различных компонентов систе-

мы и совместное использование системных ресурсов. Последнее

обстоятельство играет важную роль в существенном увеличении

производительности всей системы. Кроме того, системная магист-

раль обеспечивает передачу данных с участием памяти и уст-

ройств ввода-вывода, прямой доступ к памяти и возбуждение пре-

рываний.

Системные магистрали обычно выполняются таким образом, что

сбои проходящие в других частях системы, не влияют на их функ-

ционирование. Это увеличивает общую надежность системы. Приме-

рами магистралей общего назначения являются предложенные фир-

- 19 -

мой Intel архитектуры MULTIBUS I и II, обеспечивающие коммуни-

кационный канал для координации работы самых разнообразных вы-

числительных модулей.

MULTIBUS I и MULTIBUS II используют концепцию "ведущий-ве-

домый". Ведущим является любой модуль, обладающий средствами

управления магистралью. Ведущий с помощью логики доступа к ма-

гистрали захватывает магистраль, затем генерирует сигналы уп-

равления и адреса и сами адреса памяти или устройства вво-

да-вывода. Для выполнения этих действий ведущий оборудуется

либо блоком центрального процессора, либо логикой, предназна-

ченной для передачи данных по магистрали к местам назначения и

от них. Ведомый - это модуль, декодирующий состояние адресных

линий и действующий на основании сигналов, полученных от веду-