В общем виде эту задачу можно поставить следующим образом: пусть мы наблюдаем m независимых нормально распределенных случайных величин
Опираясь на эти статистические данные, мы хотим проверить гипотезу, согласно которой средние значения (2) равны, т.е. a1=a2=…..=am(4)
Если проверяемая гипотеза, называемая нулевой гипотезой, верна. поставив средние в каждой серии, мы не должны получить ш расхождения между ними; если такое расхождение обнаружено то гипотезу (3) приходится отбросить.
Примером подобной ситуации может служить статистическое исследование урожайности сельскохозяйственной культуры в зависимости от 1 из m сортов почвы при некотором способе ее обработки. Истинное значение урожайности для каждого из m сортов почвы неизвестно, а экспериментально наблюдаемые урожайности (3) в каждом из n экспериментов на этих сортах почвы содержат ошибки, возникающие из-за тех или иных случайных причин. Будет ли одинаковой урожайность на всех сортах почвы, если предположить, что измерения (3) проводились с ‚одинаковой точностью и в одинаковых условиях? Иначе говоря, мы хотим проверить влияние одного фактора сорта почвы — на урожайность .сельскохозяйственной культуры. В другой постановке та же задача возникает, если мы хотим проверить, насколько влияют и влияют ли вообще на плодородие почвы источники загрязнения. В этом случае сорт почвы может меняться и давать разную урожайность в зависимости от удаленности обрабатываемого участка земли от источника загрязнения.
Таблица результатов измерений будет иметь следующий вид (табл. 1):
Результаты измерений урожайности
Номер сорта почвы | Номер эксперимента | ||||
1 | 2 | 3 | … | n | |
1 | x11 | X12 | X13 | … | X1n |
2 | X21 | X22 | X23 | … | X2n |
3 | X31 | X32 | X33 | … | X3n |
… | … | … | … | … | … |
m | Xm1 | Xm2 | Xm3 | … | xnm |
Обозначим через
Систематические ошибки наблюдений урожайностей на разных почвах неодинаковы, то мы должны ожидать повышенного рассеивания выборочных средних.
Обозначим через
Суммирование по k при постоянном i дает сумму по всем наблюдениям i-той серии (т.е. по i-му сорту почвы). Дальнейшее суммирование по i дает итог по всем сортам почвы. Так как
В то же время
причем
Но
По этому приняв во внимание, что
мы можем основное тождество (6) записать в следующем виде
где
Таким образом, общая сумма квадратов ‚ распадается на две составные части, первая из которых связана с оценкой дисперсии урожайности между сортами почвы, а вторая — с оценкой дисперсии внутри всех сор почвы.
Предположим теперь, что гипотеза (4) верна, и потому нормальные распределения всех величин
Можно показать, что при этой гипотезе статистики
При более детальном изучение показывает, что Q1 и Q2 при нашей гипотезе независимы друг от друга. Заметим, этот вывод справедлив при любых предположениях относительно ai.
Из сказанного вытекает, что критерий
Пусть с другой стороны наша гипотеза неверна и средние значения (2) не равны друг другу, но параметр
По-прежнему является несмещенной оценкой для