Рис 3.
Линейное контрастирование исходного изображения
Задача контрастирования связана с улучшением согласования динамического диапазона изображения и экрана, на котором выполняется визуализация. В рассматриваемом случае формата градаций серого на кодирование каждого отсчета изображения отводится 1 байт (8 бит) запоминающего устройства, поэтому уровни могут принимать одно из 256 значений. Обычно в качестве рабочего используется диапазон 0...255; при этом значение 0 соответствует при визуализации уровню черного, а значение 255 – уровню белого. Предположим, что минимальная и максимальная яркости исходного изображения равны и соответственно. Если эти параметры или один из них существенно отличаются от граничных значений яркостного диапазона, то визуализированная картина выглядит как ненасыщенная, неудобная, утомляющая при наблюдении.
Ненасыщенное изображение можно получить из исходного при помощиследующего выражения:
Получим ненасыщенное изображение (Рис. 4а), а потом, с помощью линейного контрастирования, улучшим его качество (Рис. 4b) .
Рис . 4a
Рис 4b
При линейном контрастировании используется поэлементное преобразование вида:Рис 4
Построение линейной и кумулятивной гистограмм изображения
Для цифрового изображения формата градации серого, шкала яркостей которого принадлежит целочисленному диапазону 0...255, гистограмма представляет собой таблицу из 256 чисел. Каждое из них показывает количество точек в кадре, имеющих данную яркость.
Линейная гистограмма (Рис 5a) определяет полный перебор матрицы изображения. Значение элементов матрицыв свою очередь являются индексами массива гистограммы. При выборе какого-либо элемента матрицы к соответствующему элементу массива гистограммы добавляется единица. В итоге, после полного перебора матрицыкаждый элемент массива отражает общее число элементов матрицыс соответствующим уровнем яркости.
У кумулятивной гистограммы (Рис 5b) любое значение элемента массива равно сумме всех предыдущих.
Рис 5.
Рис 5а
Рис 5b
Бинаризация изображения
Преобразование с пороговой характеристикой превращает полутоновое изображение, содержащее все уровни яркости, в бинарное, точки которого имеют яркости 0 или 255. Такая операция, называемая иногда бинаризацией или бинарным квантованием, может быть полезной, когда для наблюдателя важны очертания объектов, присутствующих на изображении, а детали, содержащиеся внутри объектов или внутри фона, не представляют интереса (Рис 5). Математическую формулировку процесса бинаризации можно
представить следующим выражением:
Основной проблемой при проведении такой обработки является
определение порога P (я взял порог=140), сравнение с которым яркости исходного изображения позволяет определить значение яркости выходного изображения в каждой его точке. Наиболее оправданным для математического описания изображения является применение теории вероятностей, теории случайных процессов и случайных полей. При этом определение оптимального порога бинарного квантования представляет собой статистическую задачу.
Плотность вероятности, описывающая распределение яркости такого изображения, может содержать два хорошо разделяющихся пика. Интуитивно понятно, что порог бинарного квантования следует выбирать посредине провала между этими пиками. Замена исходного полутонового изображения бинарным решает две основные задачи. Во-первых, достигается бульшая наглядность для визуального восприятия, чем у исходного изображения. Во-вторых, ощутимо сокращается объем памяти для хранения изображения, поскольку для бинарного формата запись каждой точки изображения требует лишь 1 бит памяти, в то время как для полутонового изображения – 8 бит. Пример бинаризации исходного изображения приведен на Рис 6.
Рис 6
В данной курсовой работе была рассмотрена программная среда - LabVIEW. В качестве объекта исследования было использовано восьмибитное изображение размером 300х300 пикселей. Исследуемые изображения отражают закономерности взаимодействия светового и любого другого электромагнитного излучения с отдельными участками изучаемого изображения. Модуляция лучистого потока происходит как по величине его энергии, так и по спектральному распределению и осуществляется в результате взаимодействия ее излучения с исследуемым веществом за счет поглощения, отражения, рассеяния, преломления, поляризации или интерференции. Именно на этих свойствах, как правило, основано использование обработки изображений в системах автоматического анализа с целью извлечения количественной информации об исследуемых объектах.
Одним из достоинств среды LabVIEW является наглядность алгоритма выполнения и интуитивный понятный интерфейс. По моему мнению, спектр решаемых задач в среде Lab VIEW очень широк.
1. Руководство к курсовому проектированию: Обработка данных в средах MathCAD и LabVIEW, Таганрог 2007 г.
2. Жарков Ф.П., Каратаев В.В, Никифоров В.Ф, Панов В.С.
Использование виртуальных инструментов LabVIEW /Под ред.
К.С. Демирчяна и В.Г. Миронова. – М.: Радио и связь, 1999. – 268 с.
3. Тревис Дж. LabVIEW для всех /Пер. с англ. Н.А. Клушина – М.: ДМК
Пресс ; Приборкомплект, 2004. – 544 с.
4. Пейч Л.И., Точилин Д.А., Поллак Б.П. LabVIEW для новичков и
специалистов. – М.: Горячая линия – Телеком, 2004. – 384 с.
Жарков Ф.П., Каратаев В.В, Никифоров В.Ф, Панов B.C. Использование виртуальных инструментов LabVIEW /Под ред. К.С. Демирчяна и В.Г. Миронова. - М.: Радио и связь, 1999. - 268 с.