В 1990 был представлен Стандарт Команд Программируемого Инструмента (англ. Standard Commands for Programming Instruments, SCPI). SCPI добавил универсальные команды стандарта, и серии инструментальных классов с передачей специфических для класса команд. Несмотря на то, что SCPI был разработан на основе стандарта IEEE-488.2, он может быть легко адаптирован для любой другой (не-IEEE-488.1) аппаратной базы.
IEC параллельно с IEEE разработала свой собственный стандарт — IEC-60625-1 и IEC-60625-2.
Соответствующий стандарт ANSI был известен, как «ANSI Standard MC 1.1»..
В 2004, IEEE и IEC скомбинировали свои соответствующие стандарты в «Двойной протокол» IEEE/IEC — стандарт IEC-60488-1, в котором Standard for Higher Performance Protocol for the Standard Digital Interface for Programmable Instrumentation — Part 1: General заменил IEEE-488.1/IEC-60625-1, а IEEE-488.2/IEC-60625-2. IEC-60488-2 соответственнозаменённа Part 2: Codes, Formats, Protocols and Common Commands.
ГОСТ 26.003-80 Система интерфейса для измерительных устройств с байт-последовательным, бит-параллельным обменом информацией. Требования к совместимости. Дата принятия: 01.04.1985. Дата последнего изменения: 23.06.2009
Общее число адресов приёмников и источников информации в системе не должно превышать 961 при двухбайтной организации.
Приложение № 8 фактически декларирует отсутствие в стандарте средств обнаружение ошибок:
Необходимость в средствах обнаружения ошибок в устройствах широко варьируется в зависимости от шумной среды, важности данных, проходящих через интерфейс, типа функций устройства, активных в источнике и приемнике данных, и от общего применения системы, в которой используется устройство. Специализированные и конкретные средства для обнаружения ошибок не включены в данный стандарт. Соответствующий метод обнаружения ошибок зависит от конкретного применен ни устройств или системы и поэтому в настоящем стандарте не устанавливается. Некоторые общие положения, приведенные ниже, служат для иллюстрации преимуществ обычных средств обнаружения ошибок. Контрольный разряд четности на ЛД7 для обнаружения ошибок, содержащихся на ЛД0—ЛД6 7-битного кода, обеспечивает минимальные средства для обнаружения ошибок и требует минимальной аппаратной части. Проверка на четность позволяет обнаружить одиночную ошибку в пределах группировки битов любого байта. Несколько битов с ошибкой в пределах одного байта могут быть не обнаружены. Продольный контрольный разряд четности на каждой линии ЛД в конце строки или блока данных может быть использован таким же образом, что и контрольный разряд четности (для той же цели и тех же результатов). Циклический контроль c помощью избыточных кодов является более сложный и значительно повышает стоимость контроля по сравнению с вышеуказанными способами. Различные коды циклического контроля могут применяться для обнаружения ошибок различного типа. Специальные ходы циклического контроля настоящим стандартом не рассматриваются.
National Instruments представил обратносовместимое расширение для IEEE-488.1, изначально называемое высокоскоростной протокол GPIB (HS-488). Используя стандартные кабели и аппаратную базу, HS-488 улучшает производительность шины путем устранения задержек, связанных с необходимостью дожидаться подтверждения в трехсигнальной схеме IEEE-488.1 (DAV/NRFD/NDAC), где максимальная пропускная способность не превышает 1,5 МБайт/сек. Таким образом удалось увеличить скорость передачи данных до 8 МБ/сек, хотя скорость уменьшилась, когда к шине подключалось большее количество устройств. Это отобразилось в стандарте в 2003 (IEEE-488.1-2003).
Интерфейс для подключения устройств GPIB к компьютеру через шину PCI.
Поскольку шина IEEE-488 хорошо стандартизована и протестирована, большинство производителей автоматизированных измерительных систем и инструментов встраивают в свои изделия интерфейсы GPIB в качестве основного канала передачи данных.
Стандарт GPIB определяет три различных типа устройств, которые могут быть подключены к шине: "слушатель", "говорящий" и/или контроллер (точнее, устройства могут находиться в состоянии "слушатель" либо "говорящий" либо быть типа "контроллер").Устройство в состоянии "слушатель" считывает сообщения с шины; устройство в состоянии "говорящий" посылает сообщения на шину. В каждый конретный момент времени в состоянии "говорящий" может быть одно и только одно устройство, в то время как в состоянии "слушатель" может быть произвольное количество устройств. Контроллер выполняет функции арбитра и определяет, какие из устройств в данный момент находятся в состоянии "говорящий" и "слушатель".
В оборудовании для автоматических измерений
Продукты выпускаемые National Instruments ориентированы на автоматизацию лабораторных рабочих мест. Это такие классы измерительных приборов, как анализаторы-тестеры, системы калибровки, осциллографы и источники питания, базирующиеся на шине GPIB. Модульные решения (VXI) превалируют для многоцелевых систем, и самыми популярными приборами здесь являются всевозможные типы переключателей-мультиплексоров. Мультиметры в равной мере представлены в обоих случаях.
Сложные измерительные системы выпускаются фирмами HP, WaveTek, BK, Kinetic Systems. В 1993 году более половины интерфейсов GPIB приходилось на рабочие станции Sun, SGI, IBM RISC System/6000 и HP. В них используется программные средств уровня специальных языков типа ATLAS (Automated test language systems) и языков общего назначения типа АДА.
Внимание разработчиков HP фокусировалось на оснащении интерфейсом цифровой измерительной аппаратуры, проектировщики особо не планировали делать IEEE-488 интерфейсом периферийных устройств для универсальных компьютеров. Но когда первым микрокомпьютерам HP потребовался интерфейс для перефирии (жёстким дискам, НКМЛ, принтерам, плоттерам, и т. д.), HP-IB был с готовностью доступен и легко приспособлен для достижения этой цели.
Компьютеры производимые HP использовали HP-IB, например HP 9800 , серии HP 2100, и серии HP 3000[15]. Некоторые из инженерных калькуляторов, выпускаемых HP в 1980х, такие как серии HP-41 и HP-71B, также имели возможность использования IEEE-488, через необязательный интерфейсный модуль HP-IL/HP-IB.
Другие изготовители также приняли универсальную интерфейсную шину для своих компьютеров, как например линейка Tektronix 405x.
Commodore PET расширивший в 1977 список персональных компьютеров, использовавший шину IEEE-488 но с нестандартным соединителем платы для подключения своих внешних устройств. Commodore наследовал восьмибитные компьютеры такие как VIC-20, C-64 и C-128, в которых применялся последовательный интерфейс, использующий круглый соединитель DIN, для которого они сохранили программирование интерфейса и терминологии IEEE-488.
Пока скорость шины IEEE-488 была увеличена для некоторых приложений до 10 МБ/сек, отсутствие стандартов командного протокола ограничило сторонние предложения и функциональную совместимость. В конечном итоге, более быстрые, более полные стандарты, такие как например SCSI заменили IEEE-488 в периферийных устройствах.
Шина IEEE-488 и соответствующий протокол широко используются в программно-аппаратных комплексах для соединения персональных компьютеров и рабочих станций с измерительными инструментами (в частности, в системах сбора данных). Разработанный в 60-х годах в Hewlett-Packard, протокол изначально назывался HPIB (Hewlett-Packard Interace Bus, интерфейсная шина Hewlett-Packard). Впоследствии другие компании подхватили инициативу и начали использовать протокол для своих внутренних целей. Протокол был стандартизован американским Институтом инженеров электротехнической и электронной промышленности (IEEE) и переименован в IEEE-488 (по номеру стандарта) или GPIB (General Purpose Interface Bus, интерфейсная шина общего назначения) в середине 70-х годов. Аналогичный российский стандарт называется Канал Общего Пользования (КОП).
Шина IEEE-488 - это надежный и эффективный канал передачи данных. Простота использования, непрекращающееся развитие аппартной поддержки GPIB, разработка новых интерфейсных карточек и GPIB-совместимых инструментов ведут к неуклонному росту числа пользователей шины, несмотря на мощную конкуренцию со стороны архитектур VMEbus и FiberChannel. В последние несколько лет индустрия GPIB эволюционирует в направлении минимизации затрат на изготовление при сохранении базисной функциональности шины. Это достигается путем использования недорогих микроконтроллеров для реализации устройств типа "говорящий" и "слушатель".
Шина КОП состоит из 24 проводов, назначение которых в стандартном разъеме.
Все сигнальные линии используют отрицательную логику: наибольшее положительное напряжение интерпретируется как логический "0", а наибольшее отрицательное -- как логическая "1". Конкретные значения напряжения определены стандартом IEEE-488.
Сигнальные линии шины относятся к одному из трех классов:
- линии данных,
- линии "рукопожатия" (синхронизации) и
- линии управления интерфейсом.
Для пересылки команд по шине используются восемь линий данных, причем старший бит (DIO8) в большинстве случаев игнорируется.
Три линии синхронизации обеспечивают передачу данных и команд и обеспечивают гарантированный прием данных всеми устройствами типа "слушатель" в надлежащее время.