Смекни!
smekni.com

Лабараторные работы по Информатике (стр. 5 из 7)

2. Понятие о минимизации логических функций. Техническая интерпретация логических функций. Минимизация логических функций основана на применении законов склеивания и поглощения. Различают аналитический и табличный методы минимизации логической функции. Среди аналитических методов наиболее известным является метод Квайна-МакКласки, среди табличных методов - с применением диаграмм Вейча.По логическим выражениям проектируются схемы ЭВМ. При этом следует придерживаться следующей последовательности действий: 1) Словесное описание работы схемы. 2) Формализация словесного описания. 3) Запись функции в дизъюнктивной совершенной нормальной форме по таблицам истинности. 4) Минимизация логических зависимостей с целью их упрощения. 5) Представление полученных выражений в выбранном логически полном базисе элементарных функций. 6) Построение схемы устройств.

3. Элементная база ЭВМ. Классификация элементов и узлов ЭВМ. Как правило, в структуре ЭВМ выделяют следующие структурные единицы: устройства, узлы, блоки и элементы. Нижний уровень обработки реализуют элементы. Каждый элемент предназначается для обработки единичных электрических сигналов, соответствующих битам информации. Узлы обеспечивают одновременную обработку группы сигналов - информационных слов. Блоки реализуют некоторую последовательность в обработке информационных слов - функционально обособленную часть машинных операций. Устройства предназначаются для выполнения отдельных машинных операций и их последовательностей. Элементы ЭВМ можно классифицировать по следующим признакам: тип сигналов, назначение элементов, технология их изготовления. В ЭВМ широко применяют два способа физического представления сигналов: импульсный и потенциальный. При импульсном способе представления сигналов единичному значению некоторой двоичной переменной ставится в соответствие наличие импульса, нулевому значению - отсутствие импульса. При потенциальном представлении сигналов единично значение двоичной переменной отображается высоким уровнем напряжения, а нулевое значение - низким уровнем. По своему назначению элементы делятся на формирующие, логические и запоминающие. К формирующим элементам относятся различные формирователи и усилители. Простейшие логические элементы преобразуют входные сигналы в соответствии с элементарными логическими функциями. Запоминающим элементом называется элемент, который способен принимать и хранить код двоичной цифры.

4. Комбинационные схемы. Схемы с памятью.Обработка входной информации Х в выходную У в любых схемах ЭВМ обеспечивается преобразователями или цифровыми автоматами двух видов: комбинационными схемами и схемами с памятью.Комбинационные схемы - это схемы, у которых выходные сигналы Y = (у1, у2, ..., уm) в любой момент дискретного времени однозначно определяются совокупностью входных сигналов Х = (х1, х2,..., хn), поступающих в тот же момент времени t. Реализуемый в комбинационной схеме способ обработки информации называется комбинационным потому, что результат обработки зависит только от комбинации входных сигналов и формируется сразу при поступлении входных сигналов. Более сложным преобразователем информации являются схемы с памятью. Наличие памяти в схеме позволяет запоминать промежуточные состояния обработки и учитывать их значения в дальнейших преобразованиях. Выходные сигналы Y = (y1, y2, ..., уm) в схемах данного типа формируются не только по совокупности входных сигналов Х = (х1, х2, ..., хn), но и по совокупности состояний схем памяти Q = (q1,q2, ...,qk).

5. Проблемы развития элементной базы ЭВМ.Уменьшение линейных размеров микросхем и повышение уровня их интеграции заставляют проектировщиков искать средства борьбы с потребляемой Wn и рассеиваемой Wp мощностью. При сокращении линейных размеров микросхем в 2 раза их объемы изменяются в 8 раз. Пропорционально этим цифрам должны меняться и значения Wn и Wp, в противном случае схемы будут перегреваться и выходить из строя. Протекание тока по микроскопическим проводникам сопряжено с выделением большого количества тепла. Поэтому, создавая сверхбольшие интегральные схемы, проектировщики вынуждены снижать тактовую частоту работы микросхем. Таким образом, переход к конструированию ЭВМ на СБИС и ультра-СБИС должен сопровождаться снижением тактовой частоты работы схемы. Дальнейший прогресс в повышении производительности может быть обеспечен либо за счет архитектурных решений, либо за счет новых принципов построения и работы микросхем. Большие исследования проводятся также в области использования явления сверхпроводимости и туннельного эффекта - эффекта Джозефсона. Работа микросхем при температурах, близких к абсолютному нулю, позволяет достигнутьfmax, при этом Wp=Wn=0. Таким образом, можно сделать вывод, что в настоящее время возможности микроэлектроники еще не исчерпаны, но давление пределов уже ощутимо. Основой для ЭВМ будущих поколений будут БИС и СБИС совместно с ССИС. При этом структуры ЭВМ и ВС будут широко использовать параллельную работу микропроцессоров.

6. Функциональная и структурная организация ЭВМ. Общие принципы функциональной и структурной организации ЭВМ. ЭВМ имеет большое количество функциональных средств. К ним относятся коды, с помощью которых обрабатываемая информация представляется в цифровом виде: арифметические коды, помехозащищенные коды, цифровые коды аналоговых величин. Кроме кодов на функционирование ЭВМ оказывают влияние: алгоритмы их формирования и обработки, технологии выполнения различных процедур, способы организации работы различных устройств, организация системы прерывания. Функциональную организацию ЭВМ образуют: коды, системы команд, алгоритмы выполнения машинных операций, технология выполнения различных процедур, способы использования устройств при организации их совместной работы, составляющие идеологию функционирования ЭВМ. Идеологию функционирования ЭВМ можно реализовать: аппаратурными, программно-аппаратурными и программными средствами. Таким образом, реализация функций ЭВМ дополняет ее структурную организацию.

7. Организация функционирования ЭВМ с магистральной архитектурой. ЭВМ представляет собой совокупность устройств, выполненных на больших интегральных схемах. Комплект интегральных схем, из которых состоит ЭВМ, называется микропроцессорным комплектом. Все устройства ЭВМ делятся на центральные и периферийные. Центральные устройства полностью электронные, периферийные устройства могут быть либо электронными, либо электромеханическими с электронным управлением. В центральных устройствах основным узлом, связывающим микропроцессорный комплект в единое целое, является системная магистраль. Она состоит из трех узлов, называемых шинами: шина данных, шина адреса, шина управления. В состав системной магистрали входят регистры-защелки, в которых запоминается передаваемая информация, шинные формирователи, шинные арбитры, определяющие очередность доступа к системной магистрали. Логика работы системной магистрали, количество разрядов в шинах данных, адреса и управления, порядок разрешения конфликтных ситуаций, возникающих при одновременном обращении различных устройств ЭВМ к системной магистрали, образуют интерфейс системной шины.

8. Организация работы ЭВМ при выполнении задания пользователя. Организация процессов ввода, преобразования и отображения результатов относится к сфере системного программного обеспечения. Это сложные процессы, которые чаще всего делаются незаметными для пользователя. Один из них - реализация задания пользователя: профессиональный пользователь пишет задание для ЭВМ в виде программы на алгоритмическом языке. Написанное задание представляет собой исходный модуль, сопровождаемый управляющими предложениями, указывающими операционной системе ЭВМ, на каком языке написана программа и что с ней надо делать. Исходный модуль перед исполнением должен быть переведен на внутренний язык машины. Эта операция выполняется специальной программой - транслятором. Трансляторы выполняются в виде двух разновидностей: интерпретаторы и компиляторы. Интерпретатор после перевода на язык машины каждого оператора алгоритмического языка немедленно исполняет полученную машинную программу. Компилятор же сначала полностью переводит всю программу, представленную ему в виде исходного модуля, на язык машины.

9. Особенности управления основной памятью ЭВМ. Основная память – память, в которой размещается выполняемая в данный момент программа, ее данные. Она является важнейшим ресурсом компьютера, требующим тщательного управления со стороны мультипрограммной операционной системы. Распределению подлежит вся оперативная память, не занятая операционной системой. Функции операционной системы по управлению памятью: 1) отслеживание свободной и занятой памяти; 2) выделение памяти процессам и освобождение памяти при завершении процессов; 3) вытеснение процессов из оперативной памяти на диск, когда размеры основной памяти недостаточны для размещения в ней всех процессов, и возвращение их в оперативную память, когда в ней освобождается место.

10. Понятие адресного пространства. Адресная структура команд микропроцессора и планирование ресурсов. При больших размерах реализуемых программ возникают некоторые противоречия при организации мультипрограммного режима работы, трудности динамического распределения ресурсов. В настоящее время разработано несколько способов решения этих противоречий. Например, для борьбы с фрагментацией основной памяти адресное пространство программы может быть разбито на отдельные сегменты, слабо связанные между собой. Тогда программа может быть представлена в виде ряда сегментов, загружаемых в различные области оперативной памяти. При статическом перемещении программы в процессе загрузки ее в основную память адреса должны быть привязаны к конкретному месту в памяти, на что уходит много времени. Более эффективной является динамическая трансляция адресов, которая заключается в том, что сегменты загружаются в основную память без трансляции адресного пространства, а трансляция адресов каждой команды производится в процессе ее выполнения. Этот тип трансляции называется динамическим перемещением и осуществляется специальными аппаратурными средствами.