11. Виртуальная память. Виртуальная память — схема адресации памятикомпьютера, при которой память представляется программному обеспечению непрерывной и однородной, в то время как в реальности для фактического хранения данных используются отдельные области различных видов памяти, включая кратковременную (оперативную) и долговременную (жёсткие диски, твёрдотельные накопители).В случае расположения данных на внешних запоминающих устройствах память может быть представлена, например, специальным разделом на жёстком диске или отдельным файлом на обычном разделе диска.Также существует термин swap также означающий виртуальную память, или же означает подкачку данных с диска.
12. Организация многопрограммной работы и понятие о системе прерываний. Современная ЭВМ представляет собой комплекс автономных устройств, каждое из которых выполняет свои функции под управлением местного устройства управления независимо от других устройств машины. Включает устройство в работу центральный процессор. Он передает устройству команду и все необходимые для ее исполнения параметры. При возникновении события, требующего немедленной реакции со стороны машины, центральный процессор прекращает обработку текущей программы и переходит к выполнению другой программы, специально предназначенной для данного события, по завершении которой возвращается к выполнению отложенной программы. Такой режим работы называется прерыванием.Каждое событие, требующее прерывания, сопровождается специальным сигналом, который называется запросом прерывания. Некоторые из этих запросов порождаются самой программой, но время их возникновения невозможно предсказать заранее. Прерывания делятся на три типа: аппаратурные, логические и программные. Аппаратурные прерывания вырабатываются устройствами, требующими внимания микропроцессора. Запросы на логические прерывания вырабатываются внутри микропроцессора при появлении “нештатных” ситуаций. Последние два прерывания используются отладчиками программ для организации пошагового режима выполнения программ и для остановки программы в заранее намеченных контрольных точках.
13. Центральные устройства ЭВМ.Центральный процессор или центральное процессорное устройство (ЦПУ) — процессормашинных инструкций, часть аппаратного обеспечениякомпьютера или программируемого логического контроллера, отвечающая за выполнение основной доли работ по обработке информации — вычислительный процесс. Современные ЦПУ, выполняемые в виде отдельных микросхем, реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 80-х последние практически вытеснили прочие виды ЦПУ, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших и сверхбольших интегральных схем.
14. Основная память. Состав, устройство и принцип действия основной памяти. Основная память состоит из микроскопических ячеек, каждая из которых имеет свой уникальный адрес, или номер. Элемент информации сохраняется в памяти с назначением ему некоторого адреса. Чтобы отыскать эту информацию, компьютер «заглядывает» в ячейку и копирует ее содержимое в свой «командный» пункт. Емкость отдельной ячейки памяти называется словом. Обычно длина слова для персонального компьютера составляет 16 двоичных цифр, или битов. Длина в 8 бит называется байтом. Типичные большие компьютеры оперируют словами длиной от 32 до 128 бит, тогда как миникомпьютеры имеют дело со словами в 16–64 бит. Микрокомпьютеры используют, как правило, слова длиной 8, 16 или 32 бит.
15. Размещение информации в основной памяти ПЭВМ на базе МП IntelTM. Единицей информации основной памяти является байт. Каждый байт, записанный в оперативной памяти, имеет уникальный адрес. При использовании 20-битной шины адреса абсолютный адрес каждого байта является пятиразрядным шестнадцатеричным числом, принимающим значения от 00000 до FFFFF. В младших адресах располагаются блоки операционной системы, в этой же части могут размещаться драйверы устройств, дополнительные обработчики прерываний DOS и BIOS, командный процессор операционной системы. Затем располагается область памяти, отведенная пользователю. Область памяти пользователя заканчивается адресом 9FFFF. Остальное адресное пространство отведено под видеопамять, которая физически размещается не в оперативной памяти, а в адаптере дисплея. После видеопамяти расположено адресное пространство постоянного запоминающего устройства, хранящего программы базовой системы ввода-вывода. Из отведенных 256 Кбайт непосредственно постоянное запоминающее устройство занимает 64 Кб, а остальные 192 Кб оставлены для расширения постоянного запоминающего устройства.
16. Расширение основной памяти ПЭВМ. Физически увеличить объем памяти несложно, для этого необходимо только подключить к системной магистрали дополнительные модули. Но каждый байт дополнительной памяти должен иметь уникальный адрес, а адресного пространства для дополнительной памяти нет. Дополнительная память не обязательно должна была иметь объем 64 Кб. Ее объем мог быть и большим. Желание использовать в реальном режиме всю фактически имеющуюся в наличии дополнительную память привело к созданию двух виртуальных режимов, один из которых стандарт EMS, реализующий принцип банкирования дополнительной памяти. Вся дополнительная память делится на страницы емкостью по 16 Кб; выбираются четыре страницы и объявляются активными. Выбранные активные страницы отображаются на четыре окна UMB, теперь при обращении к одному из окон UMB вместо него подставляется отображенная на него страница дополнительной памяти. Поскольку любое окно UMB можно отобразить на любую страницу дополнительной памяти, то, изменяя отображение в процессе работы, можно использовать всю дополнительную память любого объема.
17. Центральный процессор ЭВМ. Центральный процессор или центральное процессорное устройство (ЦПУ) — процессормашинных инструкций, часть аппаратного обеспечениякомпьютера или программируемого логического контроллера, отвечающая за выполнение основной доли работ по обработке информации — вычислительный процесс. Современные ЦПУ, выполняемые в виде отдельных микросхем, реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 80-х последние практически вытеснили прочие виды ЦПУ, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших и сверхбольших интегральных схем.
18. Структура базового МП. Система команд МП. Микропроцессор - обрабатывающее устройство, служащее для арифметических и логических преобразований данных, для организации обращения к оперативной памяти и для управления ходом вычислительного процесса. В настоящее время существует большое число разновидностей микропроцессоров, различающихся назначением, функциональными возможностями, структурой, исполнением. В современных микропроцессорах реализована расширенная система команд. Во всех современных моделях вводятся и совершенствуются средства, позволяющие повысить производительность микропроцессора: совершенствуются конвейер команд и встроенный блок управления оперативной памятью, вводятся микропрограммное управление операциями, прогнозирование переходов по командам условной передачи управления, скалярная архитектура центрального процессора и мультискалярная архитектура. С помощью операционной системы стало возможным реализовать работу в режиме SVM, то есть на одной ПЭВМ реализовать множество независимых виртуальных машин. SL - микропроцессор изготовлен для работы с пониженным потреблением энергии; SX - данный микропроцессор является переходным - длина машинного слова в нем осталась без изменения от предыдущей модели; DX - длина машинного слова увеличена вдвое по сравнению с микропроцессором предыдущей модели.
19. Взаимодействие элементов при работе МП. Работа МП при выполнении программного прерывания. Работой МП управляет программа, записанная в оперативной памяти ЭВМ. Адрес очередной команды хранится в счетчике команд IP и в одном из сегментных регистров, чаще всего в CS. Каждый из них в реальном режиме имеет длину 16 бит, тогда как физический адрес оперативной памяти должен иметь длину 20 бит. Несогласованность длины машинного слова (16 бит) и длины физического адреса оперативной памяти (20 бит) приводит к тому, что в командах невозможно указать физический адрес оперативной памяти - его приходится формировать, собирать из разных регистров МП в процессе работы. В реальном режиме вся оперативная память делится на сегменты (длина сегмента - 64 Кбайта). Адрес оперативной памяти разделяется на две части: номер сегмента в оперативной памяти и номер ячейки внутри данного сегмента. Базовый адрес сегмента образуется добавлением к номеру сегмента справа четырех нулей. Сегмент может начинаться не с любой ячейки оперативной памяти, а только с “параграфа” - начала 16-байтного блока. На шину управления выдается команда в оперативную память, предписывающая выбрать число, находящееся по адресу, указанному в системной магистрали. Выбранное число, являющееся очередной командой, поступает из оперативной памяти через шину данных системной магистрали, интерфейс памяти, внутреннюю магистраль МП на регистр команд. Из команды в регистре команд выделяется код операции, который поступает в УУ исполнительного блока для выработки управляющих сигналов, настраивающих микропроцессор на выполнение требуемой операции.