Смекни!
smekni.com

Системи числення (стр. 2 из 3)

1) наявність фізичних елементів;

2) економічність системи числення (чим більша основа системи числення, тим потрібна менша кількість розрядів, але більша кількість відображуючих елементів). Найбільш ефективна це трійкова система числення, але двійкова система і системи числення з основою 4 - не гірша;

3) важкість виконання операцій (чим менше цифр, тим простіше);

4) швидкодія (чим більше цифр, тим менша швидкодія);

5) наявність формального математичного апарату для аналізу і синтезу обчислювальних пристроїв.

Класична двійкова система числення - це така система числення, в якій для зображення чисел використовують тільки два символи: 0 та 1, а вага розрядів змінюється по закону 2k, де к—довільне число.

Правило виконання операцій у класичній двійковій системі числення

У загальному вигляді двійкові числа можна представити у вигляді поліному:

А2 = r n*2n + r n-1* 2n-1 + … + r1* 21 + r0*20 + r-1* 2-1,

Додавання у двійковій системі числення проводиться по правилу додавання поліномів, тобто j-тий розряд суми чисел a та b визначається за формулою.

Двійкова арифметика, чи дії над двіковими числами, використовують наступні правила, задані таблицями додавання, віднімання, множення.

Додавання Віднімання Множення

0 + 0 = 0 0 – 0 = 0 0 * 0 = 0

0 + 1 = 1 1 – 0 = 1 0 * 1 = 0

1 + 0 = 1 1 – 1 = 0 1 * 0 = 0

1 + 1 = 10 10 – 1 = 1 1 * 1 = 1

Логічне додавання

0 1
0 0 1
1 1 1

Додавання по модулю 2

0 1
0 0 1
1 1 0

Додавання двох багаторозрядних двійкових чисел проводиться порозрядно з урахуванням одиниць переповнення від попередніх розрядів.

Приклад:

+

1011

1011

10110

Віднімання багаторозрядних двійкових чисел, аналогічно додаванню, починається з молодших розрядів. Якщо зайняти одиницю в старшому розряді, утвориться дві одиниці в молодшому розряді.


Приклад.

-

1010

0110

0100

Множення являє собою багаторазове додавання проміжних сум і зсувів.

Приклад.

x

10011

101

+

10011

00000

10011

1011111

Перевірка за вагами розрядів числа 1011111(2) дає 64 + 16 + 8 + 4 + 2 + 1 = 95(10).

Процес ділення складається з операцій віднімання, що повторюють.

Приклад.

101010

111

111

110

0111

111

0000

Позиційні системи числення з непостійною штучною вагою

Для ЦОМ розроблені допоміжні системи числення, що одержали назву "двійково-кодовані десяткові системи" (ДКДС). У цій системі кожна десяткова цифра представляється двійковим еквівалентом. Чотирьохрозрядне двійкове число може мати ваги розрядів: 2, 4, 2, 1 чи 8, 4, 2, 1, і ін. Десяткове число 7 у залежності від прийнятої системи ваги війкового розряду буде зображено у виді:

А) 1101 і Б) 0111

2421 8421(2-10)

Недоліком ДКДС є використання зайвих двійкових розрядів для десяткових чисел від 0 до 7. Більш раціональне застосування вісімкової системи, але вісімкові числа доводиться переводити в десяткові, а числа в ДКДС відразу читаються в десятковому коді.

Такі системи числення найчастіше використовуються в спеціалізованих ЕОМ як коди. Прикладом є двійково-десяткова системи числення.

Щоб перекласти десяткове число у двйково-десяткову систему числення, необхідно кожну цифру десяткового числа замінити.

Щоб перекласти число з двійково-десяткової системи числення необхідно спочатку перекласти його у десяткову систему числення, а потім за загальним правилом в іншу систему числення.

Щоб перекласти двійково-десяткове число у десяткову систему числення, необхідно кожні чотири цифри двійкової системи числення замінити однією цифрою десяткової системи числення, для цілої частини, починаючи з молодшого розряду, для дробової - з старшого.

Таблиця кодів

(10) 8-4-2-12 8-4-2-1 (спеціалізована) 8-4-2-1+”3” 8-4-2-1+”6” Грея
0 0000 0000 0011 0110 0000
1 0001 0001 0100 0111 0001
2 0010 0010 0110 1000 0011
3 0011 0011 0111 1001 0010
4 0100 0100 1000 1010 0110
5 0101 1011 1001 1011 0111
6 0110 1100 1001 1100 0101
7 0111 1101 1010 1101 0100
8 1000 1110 1011 1110 1100
9 1001 1111 1100 1111 1101

2. Визначення та призначення тригерів. Класифікація тригерів

Тригери - це мікроелектроні схеми з двома стійкими станами. Вони призначені для зберігання значень двійкового розряду цифр 0 або 1.

Тригери мають динамічне і потенційне керування. Кожен компонент може містити один чи кілька тригерів у корпусі, у яких загальними є сигнали установки, скидання і тактової синхронізації (дивись малюнок). Перелік тригерів приведений нижче у таблиці.

а)

б)

в)

г)

Мал.- Тригери: а) - JK-тригер з негативним фронтом спрацьовування і низьким рівнем сигналів установки і скидання; б) - D-тригер з позитивним фронтом спрацьовування і низьким рівнем сигналів установки і скидання; в) - синхронний двотактний RS-тригер; г) -синхронний однотактний D-тригер

Таблиця. Перелік тригерів

Тип

Параметри

Порядок

перерахування

виводів

Функціональне

призначення

Тригери з динамічним керуванням

JKFF

Кількість тригерів

S,R,C,J,J,...,K,K,...,Q,Q,..., Q, Q,...

JK-тригер з негативним фронтом спрацьовування і низьким рівнем сигналу установки і скидання

DFF

Кількість тригерів

S, R, C, D, D,..., Q, Q,..., Q, Q,...

D-тригер з позитивним фронтом спрацьовування і низьким рівнем сигналу установки і скидання

Тригери з потенційним управлінням

SRFF

Кількість тригерів

S, R, G, S, S,..., R, R,...,Q,Q,..., Q,Q,...

Двотактний синхронний RS‑тригер

DLTCH

Кількість тригерів

S,R,G,D,D,..., Q, Q,..., Q, Q,...

Однотактний синхронний D‑тригер

Моделі динаміки тригерів з динамічним керуванням мають формат:

MODEL <ім'я моделі> UEFF [(параметри)]

Параметри моделі тригерів з динамічним керуванням типу UEFF приведені нижче в таблиці (значення за замовчуванням - 0, одиниця виміру - c). Коса риса "/" означає "чи"; наприклад, запис S/R означає сигнал S чи R.

Моделі динаміки тригерів з потенційним керуванням має формат:

MODEL <ім'я моделі> UGFF [(параметри)]

Параметри моделі тригерів з потенційним керуванням типу UGFF приведені в таблиці 5 (значення за замовчуванням - 0, одиниця виміру ‑ с).

За замовчуванням у початковий момент часу вихідні стани тригерів прийняті невизначеними (стани X). Вони залишаються такими до подачі сигналів чи установки чи скидання переходу тригера у визначений стан. У МС5 мається можливість установити визначений початковий стан за допомогою параметра DIGINITSTATE діалогового вікна Global Settings.

У моделях тригерів маються параметри, що характеризують мінімальні тривалості сигналів установки і скидання і мінімальну тривалість імпульсів. Якщо ці параметри більше нуля, то в процесі моделювання обмірювані значення длительностей імпульсів порівнюються з заданими даними і при наявності занадто коротких імпульсів на екран видаються попереджуючі повідомлення.

Завдання №1

1. Перевести 121,37 з десяткової системи числення у двійкову: 121,3710=1111001,01012

121

2

0,37

120

60

2

2

1

60

30

2

0,74

0

30

15

2

2

0

14

7

2

1,48

1

6

3

2

2

1

2

1

2

0,96

1

0

0

2

1

1,92

вісімкову: 121,3710=171,27538