3. Связанная система координат. Начало находится в центре масс ЛА. Ось OX направлена вдоль ЛА вперед и называется продольной осью. Ось OZ направлена вправо по ходу самолета и называется поперечной осью. Ось OY лежит в плоскости симметрии самолета, направлена вверх (при нормальном полете) и называется нормальной осью (рис. 1.4).
Относительное положение связанной и нормальной СК определяется в общем случае девятью направляющими косинусами. Часто для определения относительного положения нормальной и связанной СК пользуются углами Эйлера. В этом случае для перехода от нормальной к связанной СК используется следующая последовательность поворотов: поворот на угол рысканья
(вокруг оси OYg), на угол тангажа (вокруг нового положения оси OZ) и на угол крена (вокруг оси OX). Использование углов Эйлера опирается на предположение что .Рис . 1.4. Нормальная и связанная системы координат
Матрица перехода от нормальной к связанной системе координат имеет следующий вид:
. (1.1.1)Скоростная система координат. Начало находится в центре масс ЛА. Ось OXa направлена вдоль вектора скорости БПЛА относительно воздушной среды и называется скоростной осью. Ось OZa направлена вправо и называется боковой осью. Ось OYa лежит в плоскости симметрии, направлена вверх (при нормальном полете) и называется осью подъемной силы.
Относительное угловое положение связанной и скоростной СК определяется углами атаки
и бокового скольжения (рис. 1.5).Рис. 1.5. – Связанная и скоростная системы координат
Матрица перехода от связанной СК к скоростной имеет вид:
. (1.1.2)Траекторная система координат. Начало находится в центре масс ЛА. Ось OXk направлена вдоль вектора земной скорости ЛА (т.е. вдоль вектора скорости ЛА относительно Земли). Ось OZk лежит в горизонтальной плоскости. Ось OYk направлена вверх. Оси этих координат специальных названий не имеют.
Относительное положение траекторной и нормальной СК показано на рис. 1.6. Угол между осью OXg и вертикальной плоскостью, проходящей через ось OXk называется углом пути
. Угол между осью OXk и горизонтальной плоскостью называется углом наклона траектории .Рис. 1.6. Нормальная и траекторная системы координат
Матрица перехода от траекторной к нормальной системе координат имеет следующий вид:
. (1.1.3)Правило знаков отклонения управляющих рулей. Положительное отклонение руля высоты
- вниз. Отклонения руля направления и элеронов имеют положительное значение, если при этом самолет начинает отклоняться влево. Причем, результирующее отклонение элеронов определяется как. . (1.1.4)Положительное отклонение закрылок
- вниз (при этом увеличивается подъемная сила и сила лобового сопротивления).Известно, что одним из основных моментов в составлении или разработке математической модели ЛА является принятие различных допущений, упрощающих, схематизирующих реальный процесс. Принятие допущений это инженерная задача, от правильности, решения которой зависит адекватность полученной модели решаемой проблеме в целом.
При выборе модели исходили из следующего ряда основных допущений:
· конструкция самолета считается жесткой;
· масса самолета изменяется в процессе моделирования, но отсутствует жидкое наполнение;
· масса в плоскостях XZ и YZ распределена равномерно, т.е. пренебрегаем центробежными моментами инерции Jxz и Jyz;
· аэродинамика БПЛА нелинейная по углам атаки и скольжения, обтекание БПЛА квазистационарное;
· атмосфера является стандартной;
· вектор суммарного кинетического момента вращающихся частей двигателя БПЛА направлен вдоль оси OX связанной СК.
Рассмотрим поступательное движение летательного аппарата. Уравнение сил в связанной системе координат имеет следующий вид:
, (1.2.1)где
- главный вектор сил в связанной СК; m – масса летательного аппарата; - вектор угловых скоростей в связанной СК.Главный вектор сил
, представленный в проекции связанной СК , (1.2.2)где
- вектор силы тяжести в связанной СК; - вектор силы тяги двигателя в связанной СК; - равнодействующий вектор аэродинамических сил в связанной СК.Вектор силы тяжести в нормальной системе координат
, (1.2.3)где g = 9.81 м/с2 – ускорение свободного падения.
Вектор силы тяжести в связанной системе координат
. (1.2.4)Аэродинамические силы, действующие на летательный аппарат, определяются конфигурацией ЛА и характером обтекания его воздушным потоком. В связанной СК
, (1.2.5)где q – скоростной напор; S – площадь крыла самолета; cx, cy, cz – аэродинамические коэффициенты сил.
; (1.2.6) ; (1.2.7) ; (1.2.8) , (1.2.9)где
- плотность воздуха; , - аэродинамические постоянные (Приложение А); e - коэффициент Освальда; M – число Маха; - модуль вектора скорости в связанной СК; , - углы атаки и скольжения. ; (1.2.10) , (1.2.11)где l – размах крыла;
- скорость звука на текущей высоте.Модуль вектора скорости движения ЛА в связанной СК примет следующий вид:
. (1.2.12)Углы атаки и скольжения:
; (1.2.13) . (1.2.14)Положение летательного аппарата в пространстве в нормальной СК
, (1.2.15)где матрица перехода от связанной к нормальной СК
.Рассмотрим вращательное движение летательного аппарата. Вектор момента количества движения L в связанной СК
, (1.2.16)где
- вектор момента количества движения; J - матрица моментов инерции БПЛА. В соответствии с принятыми допущениями . (1.2.17)Вращательное движение БПЛА
, (1.2.18)где M – главный вектор моментов ЛА. Запишем выражение (1.2.18) в матричном виде
. (1.2.19)