3. Связанная система координат. Начало находится в центре масс ЛА. Ось OX направлена вдоль ЛА вперед и называется продольной осью. Ось OZ направлена вправо по ходу самолета и называется поперечной осью. Ось OY лежит в плоскости симметрии самолета, направлена вверх (при нормальном полете) и называется нормальной осью (рис. 1.4).
Относительное положение связанной и нормальной СК определяется в общем случае девятью направляющими косинусами. Часто для определения относительного положения нормальной и связанной СК пользуются углами Эйлера. В этом случае для перехода от нормальной к связанной СК используется следующая последовательность поворотов: поворот на угол рысканья
Рис . 1.4. Нормальная и связанная системы координат
Матрица перехода от нормальной к связанной системе координат имеет следующий вид:
Скоростная система координат. Начало находится в центре масс ЛА. Ось OXa направлена вдоль вектора скорости БПЛА относительно воздушной среды и называется скоростной осью. Ось OZa направлена вправо и называется боковой осью. Ось OYa лежит в плоскости симметрии, направлена вверх (при нормальном полете) и называется осью подъемной силы.
Относительное угловое положение связанной и скоростной СК определяется углами атаки
Рис. 1.5. – Связанная и скоростная системы координат
Матрица перехода от связанной СК к скоростной имеет вид:
Траекторная система координат. Начало находится в центре масс ЛА. Ось OXk направлена вдоль вектора земной скорости ЛА (т.е. вдоль вектора скорости ЛА относительно Земли). Ось OZk лежит в горизонтальной плоскости. Ось OYk направлена вверх. Оси этих координат специальных названий не имеют.
Относительное положение траекторной и нормальной СК показано на рис. 1.6. Угол между осью OXg и вертикальной плоскостью, проходящей через ось OXk называется углом пути
Рис. 1.6. Нормальная и траекторная системы координат
Матрица перехода от траекторной к нормальной системе координат имеет следующий вид:
Правило знаков отклонения управляющих рулей. Положительное отклонение руля высоты
Положительное отклонение закрылок
Известно, что одним из основных моментов в составлении или разработке математической модели ЛА является принятие различных допущений, упрощающих, схематизирующих реальный процесс. Принятие допущений это инженерная задача, от правильности, решения которой зависит адекватность полученной модели решаемой проблеме в целом.
При выборе модели исходили из следующего ряда основных допущений:
· конструкция самолета считается жесткой;
· масса самолета изменяется в процессе моделирования, но отсутствует жидкое наполнение;
· масса в плоскостях XZ и YZ распределена равномерно, т.е. пренебрегаем центробежными моментами инерции Jxz и Jyz;
· аэродинамика БПЛА нелинейная по углам атаки и скольжения, обтекание БПЛА квазистационарное;
· атмосфера является стандартной;
· вектор суммарного кинетического момента вращающихся частей двигателя БПЛА направлен вдоль оси OX связанной СК.
Рассмотрим поступательное движение летательного аппарата. Уравнение сил в связанной системе координат имеет следующий вид:
где
Главный вектор сил
где
Вектор силы тяжести в нормальной системе координат
где g = 9.81 м/с2 – ускорение свободного падения.
Вектор силы тяжести в связанной системе координат
Аэродинамические силы, действующие на летательный аппарат, определяются конфигурацией ЛА и характером обтекания его воздушным потоком. В связанной СК
где q – скоростной напор; S – площадь крыла самолета; cx, cy, cz – аэродинамические коэффициенты сил.
где
где l – размах крыла;
Модуль вектора скорости движения ЛА в связанной СК примет следующий вид:
Углы атаки и скольжения:
Положение летательного аппарата в пространстве в нормальной СК
где матрица перехода от связанной к нормальной СК
Рассмотрим вращательное движение летательного аппарата. Вектор момента количества движения L в связанной СК
где
Вращательное движение БПЛА
где M – главный вектор моментов ЛА. Запишем выражение (1.2.18) в матричном виде