3. уровень пилотирования, для которого характерно управление движением ЛА как твердым телом, с учетом аэродинамики, с целью реализации команд траекторного уровня.
Полетное задание представим как траекторию движения самолета, известную до 3 производной:
Зная траекторию можно получить угловые скорости ЛА до 2 производной:
Если углы атаки и скольжения близки к нулю, то по заданной траектории ЛА, можно найти производные угловой скорости.
Аналогично вычисляются вторые производные угловой частоты:
Если при полете изменяются углы атаки и скольжения, функции их изменения учитываются при формировании каждой траектории индивидуально.
Петля Нестерова - фигура пилотажа, при которой самолет выполняет полет по криволинейной траектории в вертикальной плоскости с сохранением направления полета после вывода.
Петля была обоснована Н. Е. Жуковским и впервые выполнена 9 сентября 1913 года русским летчиком П. Н. Нестеровым, который является основоположником фигур высшего пилотажа.
Петля применяется не только как фигура пилотажа, а также имеет широкое применение для обучения управлению самолетом в условиях интенсивного изменения угла тангажа, перегрузки, скорости и высоты полета. Кроме того, элементы петли составляют основу других эволюции в полете, а также фигур пилотажа: переворот, вертикальные восьмерки и др.
Петля считается правильной, если все точки ее траектории лежат в одной вертикальной плоскости, а нормальная перегрузка
Петля - это не установившееся движение самолета по криволинейной траектории в вертикальной плоскости под действием постоянно существующей центростремительной силы. Первая половина петли осуществляется за счет запаса скорости и тяги силовой установки. Вторая - за счет веса самолета и тяги силовой установки.
Схема сил, действующих на самолет в наиболее характерных точках петли, показана на рисунке 2.1.
Допустим, самолет летит горизонтально со скоростью, необходимой для ввода в петлю. Для ввода в петлю необходимо отклонить ручку управления на себя, увеличивая тем самым угол атаки. Подъемная сила увеличивается и становится больше веса самолета (при малом угле искривления траектории) или составляющей силы веса самолета Gcos
Уравнения движения при вводе имеют вид (положение 1):
условие уменьшения скорости
условие искривления траектории в вертикальной плоскости
Другая составляющая силы веса самолета Gsin
По мере искривления траектории самолет увеличивает угол наклона траектории, при этом составляющая силы веса самолета Gcos
В положении 2 центростремительной силой является подъемная сила.
Уравнения движения в положении 2 имеют вид:
условие уменьшения скорости
условие искривления траектории в вертикальной плоскости
Рис. 2.1 Схема сил, действующих на самолет при выполнении петли
После перехода вертикального положения самолет переходит в перевернутый полет. При этом составляющая силы веса Gcos
При переходе в пикирование обороты двигателя уменьшаются до минимума. Далее при увеличении угла обратного пикирования центростремительная сила, искривляющая траекторию, состоит из подъемной силы Fay и составляющей веса Gcos
В вертикальном положении вниз искривляющей силой является подъемная сила Fay (положение 4), а вес самолета и тяга двигателя Fd направлены в одну сторону и больше силы лобового сопротивления, что способствует дальнейшему разгону скорости (G+Fd-Fax>0).
Уравнения движения в положении 3 имеют вид:
условие искривления траектории
условие увеличения скорости
Уравнения движения в положении 4 имеют вид:
условие искривления траектории
Траектория полета в вертикальной плоскости искривляется центростремительной силой Fay-Gcos
Составляющая веса Gsin
Для быстрого увеличения скорости обороты силовой установки необходимо увеличить до максимальных.
Уравнения движения на выводе (положение 5) имеют вид:
условие увеличения скорости
условие искривления траектории
Форма петли получается не круглой, а несколько вытянутой вверх. Объясняется это тем, что скорость при подъеме и при снижении непрерывно изменяется, что приводит к изменению подъемной силы, также изменяется величина составляющей силы веса Gcos
Рассматриваемый подход предусматривает, что задача сформулирована с помощью голономных соотношений выходов системы и для ее решения используется метод согласованного управления [3]. В нем используется преобразование к системе задачно-ориентированных координат, характеризирующее линейные и угловые отклонения от требуемых соотношений, что дает возможность свести многоканальную задачу управления к ряду простых задач компенсации указанных отклонений и найти решение с помощью приемов нелинейной стабилизации и программного управления.