Смекни!
smekni.com

Исследование операций 4 (стр. 1 из 2)

Министерство общего и профессионального образования РФ

Южно-Уральский Государственный Университет

Кафедра «Системы управления»

КУРСОВАЯ РАБОТА

ПО ИССЛЕДОВАНИЮ ОПЕРАЦИЙ

Вариант 14

Группа ПС-317

Выполнил: Родионова Е.В.

Проверил: Плотникова Н.В.

Челябинск, 2004


Содержание

Задача 1 2

Задача 2 4

Задача 3 6

Задача 4 8


Задача 1

№14

Условие:

Нефтеперерабатывающий завод получает 4 полуфабриката: x1 тыс. л. алкилата, x2 тыс. л. крекинг-бензина, x3 тыс. л. бензина прямой перегонки и x4 тыс. л. изопентана. В результате смешивания этих четырех компонентов в разных пропорциях образуется три сорта авиационного бензина: бензин А (а1:а2:а3:а4), бензин В (b1:b2:b3:b4) и бензин С (с1:с2:с3:с4).

Стоимость 1 тыс. л. бензина каждого сорта равна y1 руб., y2 руб. и y3 руб.

Определить соотношение компонентов, при котором будет достигнута максимальная стоимость всей продукции.

№ вар. x1 x2 x3 x4 y1 y2 y3 а1 а2 а3 а4 b1 b2
1 400 250 350 100 120 100 150 2 3 5 2 3 1
№ вар. b1 b2 c1 c2 c3 c4
1 2 1 2 2 1 3

Решение:

Составим математическую модель задачи.

Обозначим через t1 количество бензина А;

через t2 количество бензина В;

через t3 количество бензина С.

Тогда, целевая функция будет

L=y1t1+ y2t2+ y3t3=120t1+100t2+150t3 →max

Система ограничений:

Приведем систему ограничений к виду основной задачи линейного программирования (введем новые переменные t4 , t5 ,t6 ,t7, которые входят в целевую функцию с нулевыми коэффициентами):

Выберем t1 , t2 ,t3 свободными переменными, а t4 , t5 ,t6 ,t7 – базисными и приведем к стандартному виду для решения с помощью симплекс-таблицы:

L=0-(-120t1-100t2-150t3)

Составим симплекс-таблицу.

Это решение опорное, т.к. все свободные члены положительны.

Т. к. все коэффициенты в целевой функции отрицательные, то можно взять любой столбец разрешающим (пусть t1). Выберем в качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это t7)

b t1 t2 t3
L 0 -120 -100 -150
6000 60 60 180
t4 400 2 3 2 400/2=200
-100 -1 -1 -3
t5 250 3 1 2 250/3=83,3
-150 -1,5 -1,5 -4,5
t6 350 5 2 1 350/5=70
-250 -2,5 -2,5 -7,5
t7 100 2 1 3 100/2=50
50 0,5 0,5 1,5

Далее меняем t2 и t1 .

b t7 t2 t3
L 6000 60 -40 30
4000 40 80 120
t4 300 -1 2 -1 300/2=150
-200 -2 -4 -6
t5 100 -1,5 -0,5 -2,5
50 0,5 1 -4,5
t6 50 -2,5 -0,5 -6,5
50 0,5 1 -7,5
t1 50 0,5 0,5 1,5 50/0,5=100
100 1 2 1,5
b t7 t1 t3
L 10000 100 80 150
t4 100 -3 -4 -7
t5 150 -1 1 -1
t6 100 -2 1 -5
t2 100 1 2 3

Т.к. коэффициенты при переменных в целевой функции положительны, следовательно, это оптимальное решение.

Таким образом, t1 = t3 =0; t2=100; L=10000.

Т.е. для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.

ОТВЕТ: для получения максимальной прибыли следует производить только бензин В (100 тыс. л.), при этом выручка составит 10000 руб.


Задача 2

№34

Условие:

С помощью симплекс–таблиц найти решение задачи линейного программирования: определить экстремальное значение целевой функции Q=CTx при условии Ax ³£B,

где CT = [c1 c2 . . . c6 ]T , ВT = [ b1 b2 . . . b6 ]T ,

XT = [x1 x2 . . . x6]T , А= [aij] (i=1,6; j=1,3).

№ вар. с1 с2 с3 с4 с5 с6 b1 b2 b3 Знаки ограничений a11 a12 a13 a14
1 2 3
34 3 3 1 1 0 0 4 4 15 = = = 2 0 3 1
№ вар. a15 a16 a21 a22 a23 a24 a25 a26 a31 a32 a33 a34 a35 a36 Тип экстрем.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. 34 0 0 1 0 –1 2 3 0 3 3 6 3 6 0 max

Решение:

Исходная система:

Целевая функция Q= x1+3x2+x3+3x5.

Пусть х3, х4 – свободные переменные, х1, х2, х5 – базисные.

Приведем систему и целевую функцию к стандартному виду, для построения симплекс-таблицы:

Q=9 - (9/2x3-1/2x4)

Составим симплекс-таблицу:

b x3 x4
Q 9 9/2 -1/2
2/3 -5/6 1
x1 2 3/2 1/2 2/0,5=4
-2/3 5/6 -1
x2 7/3 4/3 0
0 0 0
x5 2/3 -5/6 1/2 2/3 : 1/2=4/3
4/3 -5/3 2

Это опорное решение, т.к. свободные члены положительны.

Т.к. коэффициент при х4 отрицательный, то это и будет разрешающий столбец. В качестве разрешающего элемента тот, для которого отношение к нему свободного члена будет минимально (это х5).

b x3 x5
Q 29/3 11/3 1
x1 4/3 2/3 -1
x2 7/3 4/3 0
x4 4/3 -5/3 2

Т.к. коэффициенты при переменных в целевой функции положительны, следовательно, это оптимальное решение.

Т. о. Q=29/3

x3=x5=0; x1=4/3; x2=7/3; x4=4/3.

ОТВЕТ: Q=29/3ж

x3=x5=0; x1=4/3; x2=7/3; x4=4/3.


Задача 3

№14

Условие:

Решение транспортной задачи:

1. Записать условия задачи в матричной форме.

2. Определить опорный план задачи.

3. Определить оптимальный план задачи.

4. Проверить решение задачи методом потенциалов.

№вар. а1 а2 а3 b1 b2 b3 b4 b5 с11 с12 с13
14 90 50 30 15 45 45 50 15 45 60 40
с14 с15 с21 с22 с23 с24 с25 с31 с32 с33 с34 с35
60 95 35 30 55 30 40 50 40 35 30 100

Решение:

Составим таблицу транспортной задачи и заполним ее методом северо-западного угла:

B1 B2 B3 B4 B5 a
A1 45 60 40 60 95 90
15 45 30
A2 35 30 55 30 40 50
15 35
A3 50 40 35 30 100 30
15 15
b 15 45 45 50 15 170

Это будет опорный план.

Количество заполненных ячеек r=m+n-1=6.

1) Рассмотрим цикл (1,2)-(1,3)-(2,3)-(3,2):

с1,2+с2,3>c1.3+c3.2 (60+55>30+40)

Количество единиц товара, перемещаемых по циклу: min (с1,2 ; с2,3)=15

2) Рассмотрим цикл (2,4)-(2,5)-(3,5)-(3,4):

c2,4+с3,5>c2.5+c3.4 (30+40>30+100)

Количество единиц товара, перемещаемых по циклу: min (с2,4 ; с3,5)=15

В результате получится следующий план:

B1 B2 B3 B4 B5 a
A1 45 60 40 60 95 90
15 30 45
A2 35 30 55 30 40 50
15 20 15
A3 50 40 35 30 100 30
30
b 15 45 45 50 15 170

Больше циклов с «отрицательной ценой» нет, значит, это оптимальное решение.

Проверим методом потенциалов:

Примем α1=0, тогда βj = cij – αi (для заполненных клеток).

Если решение верное, то во всех пустых клетках таблицы Δij = cij – (αi+ βj) ≥ 0

Очевидно, что Δij =0 для заполненных клеток.

В результате получим следующую таблицу: