Рис. 6.2
Число заземлителей n=16, расстояние между ними выбираем таким образом, чтобы выполнялось условие размещения заземлителей в установке, представленное в постановке задачи.
Используя рис.6.3 проведем ряд несложных вычислений:
Общий контур заземления
Рис. 6.3
Итак, a1= a +2c, b1= b +2c.
Таким образом, длина общего контура заземления при выбранной нами схеме размещения должна быть не менее значения, представленного следующим выражением:
L=2*(a+b+4c)=96м. (6.1)
Исходя из этого, делаем вывод о значении величины расстояния между одиночными заземлителями в контуре. Это значение aЇ должно быть равно или больше величины L/n=6м.
Находим коэффициент ηB использования вертикальных заземлителей. Отношение расстояния между трубами aЇ к длине труб составляет 4/3=1.3, число труб в контуре n=16. Тогда коэффициент ηB≈0.66.
Найдем коэффициент ηr использования горизонтальных заземлителей. Имеем, ηr=0.36.
Определяем расчетное сопротивление одиночного вертикального заземлителя RB выбранного профиля. Для этого используем формулу для случая типа заземлителя – трубчатый в двухслойном грунте.
, (6.2)где ρ1 - удельное сопротивления грунта верхнего слоя (Ом · м);
ρ2 - удельное сопротивления грунта нижнего слоя (Ом · м);
l - длина трубы (м);
h - высота верхнего слоя почвы (м);
r0 - радиус сечения трубы (м).
(6.3)Определяем сопротивление соединительных полос Rr без учета коэффициента использования. Тип заземлителя – горизонтальный, протяженный в однородном грунте (металлическая полоса). Полоса связи находиться в верхнем слое грунта, поскольку глубина заземления t=1м совместно с высотой полосы, которая в свою очередь < b, будет равна величине, меньшей высоты верхнего уровня грунта. Таким образом, в формуле расчета Rr в качестве ρ будем брать ρ1.
Итак,
, (6.4)где ρ1 - удельное сопротивления грунта верхнего слоя (Ом · м);
l1 = aЇ*(n-1) (м);
h - высота верхнего слоя почвы (м);
b - ширина полосы связи (м);
t - глубина заложения заземлителя (м).
Данная формула применима для вычисления сопротивление соединительной полосы при выполнении следующих условий:
l1 >> d, l1 >> 4t, где d=0.5b.
Проверим истинность условий:
d=0.5*0.04=0.02,
l1 =6*15=90.
Очевидно, условия выполняются. Поэтому, мы вправе произвести вычисление величины Rr.
(6.5)Определяем сопротивление полученного контура
(6.6)Так как сопротивление расчитанного контура незначительно меньше установленной величины (< 4Ом), то условиям безопасности будет удовлетворять контур из 16 труб и соединительной полосы L=96м.
6.6. Требования к параметрам микроклимата
При организации помещения следует учитывать параметры микроклимата, необходимые для соблюдения. Выполнение требований к данным параметрам, а ими являются: относительная влажность воздуха в помещении, температура воздуха в помещении, скорость движения воздуха – позволяет уменьшить утомляемость людей, чьи рабочие места расположены в данном помещении и тем самым увеличить производительность труда. Для помещений, содержащих компьютерную технику, следует соблюдать следующие значения: относительная влажность воздуха должна быть 40-60%, температура воздуха в помещении 20-22 градуса Цельсия, скорость движения воздуха - 0,1 м/с.
6.7. Пожаробезопасность
В соответствии с ГОСТ 12.1.004-91 «Система стандартов безопасности труда. Пожарная безопасность. Общие требования» /21/, помещения, в которых установлены персональные ЭВМ, по пожарной опасности относятся к категории Д, и должны удовлетворять требованиям по предотвращению и тушению пожара. Обязательно наличие телефонной связи и пожарной сигнализации.
Материалы, применяемые для ограждающих конструкций и отделки рабочих помещений должны быть огнестойкими. Для предотвращения возгорания в зоне расположения ЭВМ обычных горючих материалов (бумага) и электрооборудования, необходимо принять следующие меры:
- в машинном зале должны быть размещены углекислотные огнетушители типов ОУ-2, ОУ-5, ОУ-8. Согласно типовым правилам пожарной безопасности на каждые 100 кв. метров площади помещения ИВЦ должен приходиться один огнетушитель;
- в качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами;
- для непрерывного контроля машинного зала и зоны хранения носителей информации необходимо установить систему обнаружения пожаров, для этого можно использовать комбинированные извещатели типа КИ-1 из расчета один извещатель на 100м2 помещения.
Пользователи допускаются к работе на персональных ЭВМ только после прохождения инструктажа по безопасности труда и пожарной безопасности в лаборатории в целом и на каждом рабочем месте.
6.8. Выводы
В этой части дипломной работы были изложены требования к рабочему месту инженера - программиста. Созданные условия должны обеспечивать комфортную работу. На основании изученной литературы по данной проблеме, были указаны оптимальные параметры рабочего места, а также проведен расчет защитного заземления. Соблюдение условий, определяющих оптимальную организацию рабочего места инженера-программиста, позволит сохранить хорошую работоспособность в течение всего рабочего дня, повысит как в количественном, так и в качественном отношениях производительность труда программиста, что в свою очередь будет способствовать быстрейшей разработке и последующему внедрению новых программных продуктов.
В результате выполненной работы была спроектирована и программно реализована «Подсистема линейной сегментации». Данная подсистема была интегрирована в состав системы «Автоматизированного анализа пространственной структуры изображений» В рамках данной работы разрабатывались несколько задач: поиск узловых точек, поиск сегментов линий, обработка и кодирование сегментов линий. При поиске узловых точек был исследован ряд ситуаций, возникающих при различных взаимных расположениях линий, образующих графическое изображение. Были разработаны способы определения правильных координат узлов в условиях неполной определенности, тем самым позволяя подсистеме гибко обрабатывать различные типы изображений. При поиске сегментов линий учитывался характер точек, образующих изображение: такие точки могут принадлежать как одному, так и нескольким сегментам, в таком случае точка является узлом и определяет характер кодирования линии. Использование массивов узлов и сегментов позволило с минимальными затратами системных ресурсов выполнить реализацию представления всех узлов и сегментов изображения без необходимости выделения дополнительной памяти, а также предоставило возможность быстрого доступа ко всем описаниям любой точки изображения. Сравнение соответствующих элементов массивов узлов и точек позволяет получать характеристики пересечения сегментов, выделять дополнительные узлы и получать некоторые статистические данные.
Разработанная подсистема имеет удобный и интуитивно понятный пользовательский интерфейс. Все элементы управления сгруппированы по их смысловой нагрузке в соответствии с решаемыми задачами. Элементы меню имеют дублируются элементами панелей инструментов, что позволяет уменьшить время доступа к основным и наиболее часто используемым функциям подсистемы.
Результаты работы подсистемы показали правильность решения всех поставленных задач, что говорит о ее работоспособности и практической применимости. Подсистема имеет встроенную настраиваемую возможность ведения журнала вычислений, что позволяет подробно изучать процесс обработки графических изображений. В подсистему встроены модули обмена данными с подсистемами фильтрации и подсистемой цепного кодирования «Системы автоматизированного анализа пространственной структуры изображений», а также предусмотрена возможность работы со стандартным форматом BMP.
Подсистема также имеет возможность редактирования исходного изображения прямо в процессе его обработки, а также выбора необходимого режима просмотра (выбор масштаба, выделение узлов и сегментов линий), что позволяет наглядно изучить влияние характеристик входного изображения на работу алгоритмов его распознавания. Встроенная панель состояния позволяет интерактивно получать информацию о текущем состоянии подсистемы.
Разработанная подсистема используется в составе системы «Автоматизированного анализа пространственной структуры изображений» и взаимодействует с другими ее подсистемами: подсистемой фильтрации и подсистемой цепного кодирования.
1. Павлидис Т. Алгоритмы машинной графики и обработки изображений. - М.: Радио и связь, 1986. - 400с.
2. Дуда Р., Харт П. Распознавание образов и анализ сцен. - М.: Мир, 1976. - 512с.
3. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1981. – 544с.
4. Бакут П.А., Колмогоров П.С. Сегментация изображений: Методы выделения границ областей // Зарубежная радиоэлектроника, 1987, № 10. - С. 25-46.
5. Бакут П.А., Колмогоров П.С., Варновицкий И.Э. Сегментация изображений: методы пороговой обработки // Зарубежная радиоэлектроника, 1988, № 4. - С. 6-24.