— вероятность отказа вследствие переполнения очереди;
— коэффициенты загрузки ЭВМ.
Эти вероятностно-временные характеристики взаимосвязаны между собой: чем больше коэффициенты загрузки каналов, тем большее количество человек будет обслужено (малая вероятность отказа). Но, в то же время, при больших коэффициентах загрузки возможны сбои в системе, из-за ограничения количества человек в очереди.
Таким образом, об эффективности процесса функционирования СМО мы будем судить по количеству сбойных сигналов: чем меньше их, тем эффективнее система.
Проверка достоверности модели системы является немаловажной на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы, то до тех пор, пока не доказана достоверность модели, нельзя утверждать, что с ее помощью мы получили результаты, адекватные тем, которые могли бы быть получены при проведении реального эксперимента с системой. При этом проверяются возможность решения постановленной задачи, точность отражения замысла в логической схеме, полнота логической схемы модели, правильность используемых математических соотношений. Только после этого можно считать, что имеется логическая схема модели, пригодная для дальнейшей работы по реализации модели на ЭВМ.
Так как построенная модель основана на доводах, признанными верными, она отвечает требованию соответствия. В самом деле, легко проследить и переходы заявок, и управляющие воздействия, и структурированность модели.
Подготовленную в таком виде, ее будет легче программировать, а найденные математические выражения явятся основой получения результатов. Так как формулы не вызывают сомнений, составленные схемы не противоречат концептуальной, то принимаем модель достоверной и приступаем к машинной реализации.
Прежде, чем перейти к описанию математической модели, необходимо определить параметры системы, входные и выходные переменные, воздействия внешней среды.
Для моделируемой СМО в качестве параметра может быть выбрана ёмкость накопителей Н1 и Н2, которые представляют собой очереди заявок. Ёмкость буферных накопителей Н1 и Н2 будем измерять в количестве запросов, которые могут в них (очередях) находиться. В модели эти параметры подбираются для эффективности работы ЭВМ.
В качестве эндогенных (зависимых) переменных модели СМО зададим: число запросов, покинувших систему не обслуженными из-за заполненности накопителей. В модели переменная представляет собой выходную характеристику и вычисляется постоянным суммированием покидающих систему не обслуженных заявок.
В качестве экзогенных (независимых) переменных модели СМО выберем время посылки сигналов в источнике, представляющее собой случайную величину, генерируемую датчиком случайных чисел с требуемым законом распределения.
Исходя из сведений, можно сделать вывод о возможности построения модели на основании имеющегося объёма исходной информации, и её последующей машинной реализации при условии принятия ряда гипотез и предположений относительно функций распределения параметров процессов, происходящих в СМО, и воздействий внешней среды.
Анализируя условие задачи, приходим к выводу, что поток поступающих запросов СМО представляет собой поочерёдное поступление запросов с равномерным законом распределения между моментами их появления и, следовательно, с одинаковой интенсивностью.
Анализируя имеющуюся исходную информацию о СМО, можно сделать вывод, что загруженность каналов, так же как и очереди, будет не полной, а число необслуженных запросов будет сведена к нулю, т.е. СМО обеспечит обслуживание всех поступивших заявок.
Для возможности аппроксимации числовых значений интересующих характеристик системы S необходимо в процессе моделирования провести аппроксимации, для чего обычно используются процедуры: детерминированная, вероятностная и (или) процедура определения средних значений.
- детерминированные процедуры, при которых результаты моделирования однозначно определяются по данной совокупности входных воздействий переменных и параметров системы (в этом случае случайные элементы отсутствуют). Этот тип нам не подходит, так как у нас наличествует элемент случайности при поступлении заявок в систему;
- вероятностные (рандомизированные) применяются, когда случайные элементы, включая воздействие внешней среды, влияют на функционирование системы и необходимо получить закон распределения выходных переменных системы;
- определение средних значений, когда результатом моделирования являются средние значения выходной переменной при наличии случайных переменных или случайных воздействий;
Для рассматриваемой задачи моделирования СМО будем использовать как вероятностную процедуру, так и процедуру определения средних значений. Использование вероятностной процедуры объясняется тем, что в функционировании СМО присутствуют случайные элементы, влияющие на результаты моделирования. Процедура определения средних значений при моделировании процесса функционирования СМО используются по причине того, что интерес представляют средние значения выходных переменных при наличии случайных факторов: среднее число заявок в очереди и средняя загрузка ЭВМ.
На втором этапе моделирования математическая модель, сформированная на первом этапе, воплощается в конкретную машинную модель. Этот этап представляет собой этап практической деятельности, направленной на реализацию идей и математических схем в виде машинной модели процесса функционирования системы, ориентированной на использование конкретных программно - технических средств
Процессы, происходящие в СМО (поступление запросов в систему через разные промежутки времени, освобождение и занятие ЭВМ в различные моменты времени), имеют дискретный и равномерный характер. С учётом этого, а также исходя из стремления сокращения затрат времени на разработку модели СМО, для машинной реализации модели процесса функционирования СМО был выбран язык объектно-ориентированного программирования Delphi 6.
Мы выбрали именно эту среду потому, что она является наиболее оптимальной для решения всех поставленных задач в ходе курсового проекта. Программная среда Delphi 6.0 содержит в себе визуальные компоненты, такие как TButton, TLabel, TChart, TEdit, TPanel и многие другие, которые упрощают и оптимизируют работу разработчика. Важно отметить, что в среде Delphi очень просто отобразить выходные величины, с помощью компонентов TChart и TStringrig.
Исходя из этих соображений можем сказать, что для работы данной модели достаточно любого современного IBMPC совместимого компьютера, работающего под управлением ОС Windows 98 и выше.
Программирование в среде Delphi, можно разделить на два этапа: создание интерфейса и написание программного кода.
Основная работа программы осуществляется следующим образом:
Источник генерирует заявки через дискретные промежутки времени, в которые производится смена состояний элементов системы. Исходя из постановки задачи неизменные данные являются продолжительность моделирования (400 сек), время поступления запросов (10±3сек), первичная обработка запроса (2 сек), выдача ответа (18±2 сек), и изменяемые – ёмкость накопителя № 1 и № 2, манипулируя которыми достигается оптимальность системы. После ввода ёмкости накопителя № 1 и № 2 следует нажать на кнопку «Выполнить» для начала работы программы. После чего в нижнем окне будут выведены все найденные параметры системы и столбцовая диаграмма, отражающая количество сигналов в накопителе №1 в единицу времени, в которую в каждую единицу времени добавляется объём накопителя № 1 (рис 3.2.1).
Рисунок 3.2.1- Внешний вид программы.
Листинг программы представлен в приложении А.
Перед проведением рабочих расчетов на ЭВМ должен быть составлен план проведения эксперимента. Проведение планирования машинных экспериментов призвано дать возможность получить максимальный объем необходимой информации об объекте моделирования при минимальных затратах ресурсов ЭВМ. Решаются частные задачи планирования конкретного машинного эксперимента при уже заданных условиях его проведения и выбранных инструментальной ЭВМ и ее математического обеспечения.
Так как модель стохастична, в ней присутствует случайный элемент (время поступления заявок), то и результаты не будут одинаковы для двух запусков программы. Но тем не менее, можно определить некое число, к которому будет стремиться конкретный параметр (ранее мы выбрали из трех методов аппроксимации метод определения средних значений). Для этого необходимо увеличить количество прогонов программы, или, говоря языком теории вероятностей, число опытов. Это число должно быть конечным, и точность результатов при нем достаточно высока.
Определим количество прогонов необходимых для получения достоверной информации по формуле (1):