Смекни!
smekni.com

Общее описание операционных систем реального времени (стр. 5 из 7)

Трассировку системных событий (переключения задач, запись в очередь сообщений, установка семафора и т. д.) позволяет вести динамический анализатор WindView, который отображает накопленные в буфере события на временной диаграмме. В последнее время высокопроизводительные микропроцессоры, а с ними и операционные системы реального времени, все чаще используются в так называемых "глубоко встроенных" (deeply embedded) применениях (автомобильная электроника, офисная и бытовая техника, измерительные и медицинские приборы и др.). К таким компьютерным системам предъявляются два основных требования: малые габариты и низкая стоимость, поэтому глубоко встроенные микропроцессорные системы ставят две проблемы на пути применения серийных ОСРВ: небольшие объемы используемой памяти и отсутствие "лишних" интерфейсов, по которым можно было бы связать целевую и инструментальную машины на этапе разработки встроенного ПО.

Специально для систем с сильно ограниченным объемом памяти компания Wind River Systems разработала редуцированное ядро WindStream, которое требует для работы не более 8 Кб ПЗУ и 2 Кб ОЗУ. При этом для WindStream применим весь спектр инструментальных средств VxWorks, включая WindView.

Инструментальная среда Tornado имеет открытую архитектуру, что позволяет другим фирмам-производителям инструментальных средств разработки ПО реального времени интегрировать свои программные продукты с Tornado. Пользователь может подключать к Tornado свои собственные специализированные средства разработки, а также расширять возможности инструментальных средств фирмы Wind River Systems.

В стандартную конфигурацию Tornado входят ядро VxWorks и системные библиотеки, GNU C/C++ Toolkit, дистанционный отладчик уровня исходного языка CrossWind, оболочка WindSh, конфигуратор BSP WindConfig и др.

2.3 RTLinux

2.3.1 Основные сложности при реализации систем реального времени в среде LINUX

Как было сказано выше, основной задачей является реагирование на некоторое внешнее событие в заданный промежуток времени. Внешнее событие обычно, с точки зрения программиста, выглядит как аппаратное прерывание. В современных многозадачных операционных системах первым на аппаратное прерывание реагирует ядро. Затем это прерывание через драйвера устройств каким-то образом может попасть и к прикладной задаче. Но в многозадачной системе должны одновременно работать сразу несколько задач и для того, чтобы доставить прерывание, ядро должно перевести процесс, выполняющийся в данный момент в состояние сна, пробудить нужный процесс и передать ему прерывание. Для этого нужно переключать контексты, что требует много времени, поэтому прерывание будет доставлено процессу со значительным опозданием. Кроме того, после получения прерывания процессом нельзя быть уверенным, что обработка информации будет завершена в минимальные сроки, т.к. если компьютер оснащен всего одним процессором, а в системе запущено больше одной задачи - то в любой момент может произойти переключение задач с очередным переключением контекстов. В результате - время реакции может получиться неоправданно большим (на достаточно производительном компьютере).

Linux - современная POSIX-совместимая и Unix-подобная операционная система для ПК и рабочих станций, т. е. многопользовательская сетевая операционная система. ОС Linux поддерживает стандарты открытых систем и протоколы сети Internet. Все компоненты системы, включая исходные тексты, распространяются с лицензией на свободное копирование и установку для неограниченного числа пользователей.

Характерные особенности Linux как ОС:

o многозадачность (является обязательным условием);

o многопользовательский режим;

o защищенный режим процессора (386 protected mode);

o защита памяти процесса (сбой программы не может вызвать зависания системы);

o экономная загрузка: Linux считывает с диска только те части программы, которые действительно используются для выполнения;

o разделение страниц по записи между экземплярами выполняемой программы. Это значит, что процессы-экземпляры программы могут использовать при выполнении одну и ту же память. Когда такой процесс пытается произвести запись в память, то 4-килобайтная страница, в которую идет запись, копируется на свободное место. Это свойство увеличивает быстродействие и экономит память;

o виртуальная память со страничной организацией (т. е. на диск из памяти вытесняется не весь неактивный процесс, а только требуемая страница); виртуальная память в самостоятельных разделах диска и/или файлах файловой системы; объем виртуальной памяти до 2 Гб; изменение размера виртуальной памяти во время выполнения программ;

o общая память программ и дискового кэша: вся свободная память используется для буферизации обмена с диском;

o динамические загружаемые разделяемые библиотеки;

o дамп программы для пост-мортем анализа: позволяет анализировать отладчиком не только выполняющуюся, но и завершившуюся аварийно программу;

o сертификация по стандарту POSIX.1, совместимость со стандартами System V и BSD на уровне исходных текстов;

o через iВS2-согласованный эмулятор совместимость с SCO, SVR3, SVR4 по загружаемым программам;

o наличие исходного текста всех программ, включая тексты ядра, драйверов, средств разработки и приложений. Эти тексты свободно распространяются. В настоящее время некоторыми фирмами для Linux поставляется ряд коммерческих программ без исходных текстов, но все, что было свободным так и остается свободным;

o управление заданиями в стандарте POSIX;

o эмуляция сопроцессора в ядре, поэтому приложение может не заботиться об эмуляции сопроцессора. Конечно, если сопроцессор имеется в наличии, то он и используется;

o множественные виртуальные консоли: на одном дисплее несколько одновременно независимых сеансов работы, переключаемых с клавиатуры;

o поддержка ряда распространенных файловых систем (MINIX, Xenix, файловые системы System V); наличие собственной передовой файловой системы объемом до 4 Тб и с именами файлов до 255 знаков;

o прозрачный доступ к разделам DOS (или OS/2 FAT): раздел DOS выглядит как часть файловой системы Linux; поддержка VFAT (WNT, Windows 95);

o доступ (только чтение) к файловой системе HPFS-2 OS/2 2.1;

o поддержка всех стандартных форматов CD ROM;

o поддержка сети TCP/IP, включая ftp, telnet, NFS и т. д.

Рост популярности Linux побуждает разработчиков внимательнее присмотреться к этой операционной системе. В данный момент эта ОС готова к стабильной работе, а открытость ее исходных текстов и архитектуры наряду с растущей популярностью заставляет программистов переносить свои наработки на многие аппаратные платформы: SGI, IBM, Intel, Motorola и т. д.

Для задач РВ сообщество разработчиков Linux активно применяет специальные расширения - RTLinux, KURT и UTIME, позволяющие получить устойчивую среду реального времени. RTLinux представляет собой систему "жесткого" реального времени, a KURT (KU Real Time Linux) относится к системам "мягкого" реального времени. Linux-расширение UTIME, входящее в состав KURT, позволяет добиться увеличения частоты системных часов, что приводит к более быстрому переключению контекста задач.

RTLinux - это операционная система, в которой небольшое ядро реального времени сосуществует с Posix-like ядром Linux. Основная цель - сделать доступными сложные службы и оптимизированное поведение системы в стандартных ситуациях для системы с разделением времени, и, в то же время, выполнять задачи реального времени. В прошлом операционные системы реального времени примитивны - простые программы, которые предлагали пользователю чуть больше, чем просто библиотека основных функций. Но в наше время пользователи требуют доступ к TCP/IP, графическому дисплею и системе окон, базам данных и другим службам, которые не являются ни примитивными, ни простыми. Одно из решений - добавить non-real-time службы к базовому ядру реального времени, что и было проделано в VXworks и, немного по-другому, в микроядре QNX. Вторая возможность - модифицировать стандартное ядро и сделать его полностью прерываемым.

2.3.2 Организация RTLinux

RTLinux организован третьим способом, в котором простое ядро реального времени запускает обычное ядро как одну из задач реального времени с самым низким приоритетом, используя виртуальную машину для того, чтобы сделать стандартное ядро полностью прерываемым.

В RTLinux все прерывания обслуживаются ядром реального времени, а затем передаются стандартному ядру, но только в том случае, если нет необходимости запускать одну из задач реального времени. Для того чтобы минимизировать количество изменений в стандартном ядре, этот механизм реализован при помощи эмулирования ICH (Interrupt Control Hardware). Ядро реального времени и пользовательские задачи Linux могут обмениваться данными через неблокируемые очереди и сегменты разделяемой памяти.

С точки зрения программиста очереди выглядят как стандартные последовательные устройства UNIX, доступ к которым возможен при помощи системных вызовов POSIX read/write/open/ioctl. Разделяемая память доступна через системный вызов mmap.

RTLinux использует Linux для загрузки, доступа к большинству устройств, работы с сетью, файловыми системами, управлением процессами Linux и загрузки модулей ядра, что дает возможность легко модифицировать систему реального времени.

Программа реального времени состоит из двух частей: задачи, которая представляет собой модуль ядра, и обыкновенный UNIX/Linux процесс и заботится об обработке данных, доступу к дисплею и сети и о любых других функциях, не требующих таких жестких временных рамок.

На практике оказалось, что идея RTLinux очень удачна. В самом худшем случае запаздывание прерываний на 486/33Mhz PC оказалось менее 30 мкс, что близко к аппаратному пределу. Для прикладных задач симбиоз систем реального времени и оптимизированной для "общего случая" оказался очень удачным. Наиболее часто используемая конфигурация RTLinux - примитивные задачи реального времени со статически распределяемой памятью без ее защиты, простым планировщиком с фиксированными приоритетами без защиты от нереализуемых планов, аппаратным запрещением прерываний, разделяемая память - единственный механизм синхронизации задач реального времени и ограниченный набором операций над FIFO-очередями, подсоединенными к обычным процессам Linux.