Смекни!
smekni.com

Дослідження методів інтерполяції (стр. 2 из 3)

Методи розв`язування таких систем добре розроблені.


2.Вибір методів технічних та інструментальних засобів вирішення задачі

Був обраний метод сплайнів, тому що цей метод дозволяє отримати аналітичну кусково – поліноміальну функцію.

Інтерполяція сплайнами - це швидкий, ефективний і стійкий спосіб інтерполяції функцій. Нарівні з раціональною інтерполяцією, сплайн - інтерполяція є однією з альтернатив поліноміальної інтерполяції. Основними якостями сплайн - інтерполяції являється її стабільність і мала трудомісткість. Системи лінійних рівнянь, які потрібно вирішувати для побудови сплайнів, дуже добре обумовлені, що дозволяє отримувати коефіцієнти поліномів з високою точністю. У результаті навіть про дуже великих N обчислювальна схема не втрачає стійкість. Побудова таблиці коефіцієнтів сплайна вимагає O(N) операцій, а обчислення значення сплайна в заданій точці - усього лише O(log(N)).

Існують сплайни більш вищих порядків. Вживання цього методу можливо і в інших галузях обчислювальної математики, наприклад, в чисельному інтегруванні і розв`язуванні диференціальних рівнянь.


3. Алгоритми методів

Метод реалізований за допомогою двох функцій, які викликаються в головній підпрограмі. На рисунку 3.1 представлений алгоритм головної програми.


Рисунок 3.1 – Алгоритм головної програми

Алгоритми функцій spline та function подані нижче.



Рисунок 3.2 – Алгоритм функції spline


0 1

Рисунок 3.3 – Продовження алгоритму функції spline



0 1

0 1

Рисунок 3.4 – Алгоритм фунції Gauss



Рисунок 3.5 – Продовження алгоритму фунції Gauss


4. Алгоритмізація розв’язання задачі

4.1 Вхідні данні

Вхідними даними для вирішення інтерполяції напруги вольтметра в точках Т=75°С, 93°С методом сплайнів є тарировочна таблиця для термопари. Яка наведена нижче:

Т,°С 20 40 60 80 100 120
U, мВ -0,67 -0,25 -0,17 0,61 1,06 1,52

Вхідними даними в програмі є змінні xi та yi, що приймає значення заданих в тарировочній таблиці.

xi[KOL]={20,40,60,80,100,120};

yi[KOL]={-0.67,-0.25,-0.17,0.61,1.06,1.52};

Змінна xi приймає значення типу int, а змінна yidouble.

4.2 Розробка та опис логічної частини програми

Значення інтерполяційного поліному за допомогою кубічних сплайнів обчислюється функцією Spline(), що має аргументом одну змінну типу double (значення температури) і повертає значення типу double (значення напруги).

Для розв’язку системи рівнянь методом Гауса використовується функція Gauss() що не має аргументів та не повертає значень.

Для обчислення обох функцій використовуються дані у глобальних масивах xi[6] – масив значень температури, yi[6] – масив значень напруги та масив коефіцієнтів рівнянь mas[15][16].

Результати обчислень фунцією Gauss() знаходяться в останньому стовпці mas.

Графічне подання результатів:

Оцінка похибки.

З графіка видно, що похибка незначна на всьому діапазоні представлення функції.

4.3 Результати обчислень

Результатом роботи програми є те, що виводяться кінцеві результати: Значення інтерполяційного поліному для Т=750 і Т=930:

T=75, U=0.408483;

T=93, U=0.940465.


5. Розвязання задачі в пакетах прикладних програм

Для реалізації сплайн інтерполяції в Мachcad вбудовані три функції які слугують для отримання вектора другої похідної сплайн функції при різному виді інтерполяції. В нашому випадку використовується функція cspline(vX,vY), що повертає вектор vs других похідних при наближенні до опорних точок кубічного поліному.

На рисунку 5.1 показаний розвязок сплайн інтерполяції кубічного поліному.

Рисунок 5.1 – Сплайн інтерполяція кубічного поліному

5.1 Інструкція користувачеві

Дана програма вирішує задачу інтерполяції в точках Т=750 і Т=930 методом сплайнів.


Програма має досить непоганий інтерфейс для коректної роботи програми, використання її досить просте, і труднощів з використанням даної програми не викликатиме.

Головне меню має вигляд.

Рисунок 6.1 – Вікно меню

Меню має три підменю «Виконання», «Допомога» та «Вихід».

Підменю «Виконання» виводить розрахунок інтерполяції на екран.

Рисунок 6.1 – Розрахунок інтерполяції

В свою чергу підменю «Допомога» містить наступні пункти «Справка» і «Автор».


Рисунок 6.3 – Справка

Вихід з програми забезпечується підменю «Вихід», або клавішею «Esc».


Висновки

В ході виконання даної курсової роботи була розроблена програма по вирішуванню інтерполяційних задач методом інтерполяції. В данній курсовій роботі згідно технічного завдання розроблено комплекс програм для дослідження зміни температури термопари. Програма наочно, а саме, в графічному, дозволяє реалізувати процес дослідження. Програма може стати в нагоді інженеру будь-якого підприємства.