Міністерство освіти та науки України
Вінницький національний технічний університет
Кафедра автоматики та інформаційно
вимірювальної техніки
2008
Зміст
Анотація
Вступ
1. Задача інтерполяції
1.1 Сплайн інтерполяція
2. Вибір методів технічних та інструментальних засобів вирішення задачі
3. Алгоритми методів
4. Алгоритмізація розв’язання задачі
4.1 Вхідні данні
4.2 Розробка та опис логічної частини програми
4.3Результати обчислень
5. Розв’язання задачі в пакетах прикладних програм
6. Інструкція користувачеві
Висновки
Література
В даній курсовій роботі проведено дослідження методу сплайнів для вирішення задачі інтерполяції. Було розроблено задачу знаходження інтерполяції напруги в точках Т=75°С, 93°С.
Проведено тестування: меню, та всієї програми в цілому. Тести показали, що програма готова до використання. Описано алгоритм розв'язку поставленої задачі. Складено програму на мові Turbo C++.
Вступ
Сучасний час характерний різким розширенням розділів математики, багато в чому зв’язаним з створенням і розвитком засобів обчислювальної техніки. В результаті появи ЕОМ з програмним управлінням набагато зросла швидкість виконання математичних задач. Використовуючи ЕОМ і розширення математичної освіти різко збільшило можливості побудови і дослідження математичних моделей, а також вирішити ряд важливих науково-технічних задач. Проте можна сказати ще одне - числові машини можна використовувати ефективно лише за умови глибокого знання чисельних методів математики.Математичне моделювання-засіб дослідження реальних об’єктів та явищ використаних у геофізиці, хімії, геології, біології, медицині, психології, лінгвістиці та ін. науках.
Математичне моделювання можна розглядати як засіб вивчення реальної системи шляхом заміни її більш зручною для експерементального дослідження системи (моделлю), яка зберігає суттєві риси оригіналу.
Математичне моделювання включає такі етапи: дослідження об’єкта і створення його математичного опису; побудова алгоритму, який моделює поведінку об’єкта; перевірка адекватності моделі і об’єкта; використання моделі.
Ефективність математичного моделювання в більшості визначається ефективністю використовуваних для розрахунків моделей обчислювальних методів і алгоритмів.
В практичній діяльності людини часто виникають такі задачі, коли маючи обмежену кількість експериментальних даних, треба спрогнозувати, які наслідки слід очікувати при інших умовах експерименту над тим же об'єктом. В математиці для цієї мети широко використовують рівняння різного вигляду, які з той чи іншою похибкою моделюють поведінку об'єкта. Підбір таких рівнянь називають апроксимацією експериментальних даних. Зокрема, апроксимація усередині області одержання експериментальних даних називається інтерполяцією, а за межами цієї області – екстраполяцією.
У більшості випадків підбір підходящих рівнянь ускладнюється тим, що експериментальні дані отримані приблизно і вміщують похибку експерименту та обчислювань.
Інтерполяція сплайнами третього порядку - це швидкий, ефективний і стійкий спосіб інтерполяції функцій. Нарівні з раціональною інтерполяцією, сплайн - інтерполяція є одній з альтернатив поліноміальної інтерполяції. У основі сплайна-інтерполяції лежить наступний принцип. Інтервал інтерполяції розбивається на невеликі відрізки, на кожному з яких функція задається поліномом третьоього степеня. Коефіцієнти полінома підбираються так, щоб виконувалися певні умови(які саме, залежить від способу інтерполяції). Загальні для всіх типів сплайнів третього порядку вимоги - безперервність функції і, зрозуміло, проходження через задані їй точки. Додатковими вимогами можуть бути лінійність функції між вузлами, безперервність вищих похідних і так далі. Основними перевагами сплайна-інтерполяції є її стійкість і мала трудомісткість. Системи лінійних рівнянь, які потрібно вирішувати для побудови сплайнів, дуже добре обумовлені, що що дозволяє отримувати коефіцієнти поліномів з високою точністю.
1. Задача інтерполяції
Мета інтерполяції – побудування функції
, яка приймає в окремих точках (вузли інтерполяції) значення, (1)що збігається з раніше заданими значеннями в цих точках невідомої функції
. Геометрично це означає, що потрібно знайти криву певного типу, яка проходить через систему точок (рисунок 1).Рисунок 1.1- Інтерполяція даних
В загальних випадках ця задача має нескінчену множину розв’язків чи зовсім не має розв’язку, але вона стає однозначною, якщо замість довільної функції
шукати поліном ступеня не вище , який задовольняє умову (1), тобтоІнтерполяційну формулу
, як правило, використовують для наближеного обчислення значень даної функції для . Така операція зветься інтерполяцією. Треба відзначити, що в вузькому розумінні, коли , та екстраполяція коли знаходиться за межами інтервалу , тобто чи .1.1 Сплайн інтерполяція
У випадку, який показаний на рисунку 2, необхідно задати всі кубічні функції
В найбільш загальному випадку ці багаточлени мають такий вигляд:
де
- постійні, які визначені вказаними умовамиПерші (2m)умов потребують, щоб сплайни стикалися в заданих точках:
Наступні (2m-2) умов потребують, щоб в місцях дотику сплайнів були рівні перші та другі похідні
Рисунок 1.1.1 - Сплайн інтерполяція
Система алгебраїчних рівнянь має розв`язок, якщо кількість рівнянь дорівнює кількості невідомих. Для цього необхідні ще два рівняння. Як правило, використовують такі додаткові умови:
Отриманий таким чином сплайн зветься “природнім кубічним сплайном”. При знайдених коефіцієнтах сплайна використовують цю кусково – гладку поліноміальну функцію для інтерполяції.
Якщо спеціально вибрати вигляд кубічних багаточленів, можна значно спростити задачу (зменшити кількість рівнянь). В випадку, коли окремі кубічні рівняння мають вигляд:
кожне з рівнянь
містить тільки два невідомих коефіцієнти. Після того, як перше рівняння записано, з кожним наступним рівнянням додається тільки один невідомий коефіцієнт. При цьому при , а приОтже, всі умови, крім умов для других похідних, задовольняються. Другі похідні виражені для внутрішніх точок відношеннями:
а для двох зовнішніх:
таким чином, система рівнянь, яку розв`язуємо, є лінійною, а її матриця – тридіоганальною: