Смекни!
smekni.com

Исследование динамики финансовых рынков нейросетевыми методами (стр. 2 из 8)

Общий вид нейрона представлен на рисунке 1.1., где yj – сигнал, поступающий от нейрона j; sk – скалярное произведение вектора входных сигналов и вектора весов; fk – функция возбуждения; yk – выходной сигнал нейрона.

Рис. 1.2. Искусственный нейрон – простейший элемент искусственной нейронной сети

Источник: [7, с. 22]

Таким образом, нейрон состоит из элементов трех ти­пов: умножителей (синапсов), сумматора и нелинейного преобра­зователя. Синапсы осуществляют связь между нейронами, умно­жают входной сигнал на число, характеризующее силу связи (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента - выхода сумматора. Эта функция на­зывается функцией активации или передаточной функциейнейрона. Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:

S=

+ b (1.1)

Y= f(s) (1.2)

где Wt– вес синапса, i= 1...n; b– значение смещения; s– результат суммирования; X1 – компонент входного вектора (входной сигнал); i= 1...n; у – выходной сигнал нейрона; n– число входов нейрона; f – нелинейное преобразование (функ­ция активации).

В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах – лишь некоторые фиксированные значения. Выход (у) определяется видом функции активации и может быть как действительным, так и целым.

Синаптические связи с положительными весами называют возбуждающими, с отрицательными весами – тормозящими.

Описанный вычислительный элемент можно считать упро­щенной математической моделью биологических нейронов. Чтобы подчеркнуть различие нейронов биологических и искусственных, вторые иногда называют нейроноподобными элементами или формальными нейронами.

На входной сигнал (s) нелинейный преобразователь отвеча­ет выходным сигналом f(s), который представляет собой выход у нейрона. Основные разновидности активационных функций, применяемых в

нейронных сетях, представлены на рис. 1.2.

Рис. 1.2. Активационная функция

а) пороговая; b) полулинейная; c) сигмоидальная

Источник: [2, с. 45]

В качестве активационной функции часто используется сигмоидальная (s-образная или логистическая) функция, показанная на рис. 1.2 с. Эта функция математически выражается по формуле

f(x) =

(1.3)

При уменьшении α сигмоидальная функция становится более пологой, в пределе при α=0 вырождаясь в горизонтальную линию на уровне 0,5; при

увеличении α сигмоидальная функция приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоидальной функции видно, что выходное значение нейрона лежит в диапазоне [0,1]. Одно из полезных свойств сигмоидальной функции – простое выражение для ее производной:

f (x) = α f (x) (1- f (x)) (1.3)

Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, сигмоидальная функция обладает свойством усиливать малые сигналы лучше, чем большие, тем самым предотвращая насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоидальная функция имеет пологий наклон.

Выбор структуры нейронной сети осуществляется в соответствии с особенностями и сложностью задачи. Для решения некоторых отдельных типов задач уже существуют оптимальные, на сегодняшний день конфигурации, описанные, например, в [6, 7, 8]. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации.

Теоретически число слоев и число нейронов в каждом слое нейронной сети может быть произвольным, однако фактически оно ограничено ресурсами компьютера или специализированной микросхемы, на которых обычно реализуется нейронная сеть. При этом, если в качестве активационной функции для всех нейронов сети используется функция единичного скачка, нейронная сеть называется многослойным персептроном.

В нейронных сетях, называемых персептронами, используется активационная функция единичного скачка.

Также примерами активационных функций являются: полулинейная, линейная, логистическая (сигмоидальная), гиперболический тангенс, экспоненциальная, синусоидальная, сигмоидальная (рациональная), шаговая (линейная с насы­щением), пороговая, модульная, знаковая (сигнатурная), квадратичная.

1.2. Искусственные нейронные сети: их свойства и классификация

Нейронная сеть представляет собой совокупность нейроподобных элементов, определенным образом соединенных друг с другом и с внешней средой с помощью связей, определяемых ве­совыми коэффициентами.

В зависимости от функций, выполняе­мых нейронами в сети, можно выделить три их типа:

• входные нейроны, на которые подается вектор, кодирую­щий входное воздействие или образ внешней среды; в них обычно не осуществляется вычислительных процедур, а информация пе­редается с входа на выход путем изменения их активации;

• выходные нейроны, выходные значения которых пред­ставляют выходы нейронной сети; преобразования в них осущест­вляются по выражениям (1.1) и (1.2);

• промежуточные нейроны, составляющие основу нейрон­ных сетей, преобразования в которых выполняются также по вы­ражениям (1.1) и (1.2).

В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот – выходной нейрон. Однако возможен случай, когда выход топологически внутреннего нейрона рассматривается как часть выхода сети. В процессе функциониро­вания сети осуществляется преобразование входного вектора в выходной, некоторая переработка информации. Конкретный вид выполняемого сетью преобразования данных обусловливается не только характеристиками нейроподобных элементов, но и особен­ностями ее архитектуры, а именно топологией межнейронных связей, выбором определенных подмножеств нейроподобных элемен­тов для ввода и вывода информации, способами обучения сети, наличием или отсутствием конкуренции между нейронами, на­правлением и способами управления и синхронизации передачи информации между нейронами.

С точки зрения топологии можно выделить три основных ти­па нейронных сетей:

• полносвязные (рис. 1.4. а);

• многослойные или слоистые (рис. 1.4. б);

• слабосвязные (с локальными связями) (рис. 1.4. в).

Рис. 1.3. Архитектуры нейронных сетей

Источник: [12, с. 35]

В полносвязных нейронных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, в том числе и самому себе. Все входные сигналы подаются всем нейронам. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети.

В многослойных нейронных сетях нейроны объединяются в слои. Слой содержит совокупность нейронов с едиными входными сигналами. Число нейронов в слое может быть любым и не зави­сит от количества нейронов в других слоях. В общем случае сеть состоит из Q слоев, пронумерованных слева направо. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев. Связи от выходов нейронов некоторого слоя q к входам нейронов следующего слоя (q+1) называются последовательными.

Входной слой Скрытый слой Выходной слой

Рис 1.4. Многослойная (двухслойная) сеть прямого распространения

Источник: [15, с. 55]

В свою очередь, среди многослойных нейронных сетей вы­деляют следующие типы.

1) Монотонные. Это частный случай слоистых сетей с дополнительными ус­ловиями на связи и нейроны. Каждый слой кроме последнего (вы­ходного) разбит на два блока: возбуждающий и тормозящий. Связи между блоками тоже разделяются на тормозящие и возбуждаю­щие. Если от нейронов блока А к нейронам блока В ведут только возбуждающие связи, то это означает, что любой выходной сигнал блока является монотонной неубывающей функцией любого вы­ходного сигнала блока А. Если же эти связи только тормозящие, то любой выходной сигнал блока В является невозрастающей функ­цией любого выходного сигнала блока А. Для нейронов монотон­ных сетей необходима монотонная зависимость выходного сигна­ла нейрона от параметров входных сигналов

2) Сети без обратных связей. В таких сетях нейроны вход­ного слоя получают входные сигналы, преобразуют их и передают
нейронам первого скрытого слоя, и так далее вплоть до выходного,
который выдает сигналы для интерпретатора и пользователя. Ес­ли не оговорено противное, то каждый выходной сигнал q-го слоя
подастся на вход всех нейронов (q+1)-го слоя; однако возможен
вариант соединения q-го слоя с произвольным (q+р)-м слоем.

Среди многослойных сетей без обратных связей различают полносвязанные (выход каждого нейрона q-го слоя связан с вхо­дом каждого нейрона ((q+1)-го слоя) и частично полносвязанные. Классическим вариантом слоистых сетей являются полносвязан­ные сети прямого распространения (рис. 1.4).

3) Сети с обратными связями. В сетях с обратными связя­ми информация с последующих слоев передается на предыдущие.
Среди них, в свою очередь, выделяют следующие.