Смекни!
smekni.com

Исследование динамики финансовых рынков нейросетевыми методами (стр. 6 из 8)

3. Практика работы с нейросимуляторами на финансовом рынке свидетельствует о том, что создание и тщательное ведение обширной, постоянно обновляемой и хорошо структурированной базы финансовых, макроэкономических и политических данных крайне важно, поскольку они существенно влияют на ситуацию и качество прогноза. Так как ситуация на рынке непрерывно изменяется, то и набор значащих влияющих факторов (или их порядок внутри этого набора) также изменяется во времени. В связи с этим, нейронную сеть необходимо время от времени настраивать и обучать заново.

4. Наличие подробной документации крайне важно при работе с нейросимулятором. Документация обычно включает подробное описание методов и примеров, индексный и предметный указатели, а также обучающий курс. Некоторые компании–разработчики нейросимуляторов поддерживают «горячую линию» по телефону и Интернет, а также проводят семинары пользователей по обучению приемам эффективной работы с нейросимуляторами.

1.6. Проблемы развития нейронных сетей

Рассмотрим ряд проблем, стоящих сегодня на пути широкого распространения нейросетевых технологий.

1. Большинство применяемых нейронных сетей представляют сети обратного распространения – наиболее популярного современного алгоритма. В свою очередь, алгоритм обратного распространения не свободен от недостатков. Прежде всего не существует гарантии, что нейронная сеть может быть обучена за конечное время: зачастую усилия и затраты машинного времени на обучение, пропадают напрасно. Когда это происходит, обучение повторяется – без всякой уверенности, что результат окажется лучше.

2. Нет также уверенности, что сеть обучится наилучшим возможным образом. Алгоритм обучения может попасть в «ловушку» так называемого локального минимума ошибки, и наилучшее решение не будет получено.

3. Разработано много других алгоритмов обучения нейронных сетей, имеющих свои преимущества, однако, следует отметить, что все они не свободны от ограничений.

4. Разработчики склонны преувеличивать свои успехи и замалчивать неудачи, создавая зачастую о нейронных сетях и нейрокомпьютерах необъективное впечатление. Поэтому предприниматели, желающие основать новые компании в области нейросетевых технологий, должны предельно четко представлять пути развития того или иного проекта и пути получения прибыли.

5. Таким образом, существует опасность, что нейросетевые технологии начнут продаваться и покупаться раньше, чем придет их время, обещая потребительские и функциональные возможности, которые пока невозможно достигнуть. Если это произойдет, то технология в целом может пострадать от потери кредита доверия и вернется к периоду невостребованности семидесятых годов.

6. Существует проблема неспособности традиционных искусственных нейронных сетей «объяснить», как они решают задачу. Это напоминает нашу неспособность объяснить, как мы узнаем человека, несмотря на расстояние, освещение и прошедшие годы.

7. Технология требует улучшения существующих методов и расширения теоретических основ, для того чтобы нейронные сети полностью реализовали свои потенциальные возможности.

8. Прежде чем искусственные нейронные сети можно будет использовать для решения задач, где поставлены на карту человеческие жизни или важные народнохозяйственные объекты, должны быть решены вопросы надежности искусственных нейронных сетей.

Таким образом, типовые задачи, решаемые с помощью нейронных сетей и нейрокомпьютеров следующие: автоматизация процесса классификации; автоматизация прогнозирования; автоматизация процесса предсказания; автоматизация процесса принятия решений; управление; кодирование и декодирование информации; аппроксимация зависимостей и др.

Области применения нейронных сетей весьма разнообразны – это распознавание текста и речи, семантический поиск, экспертные системы и системы поддержки принятия решений, предсказание курсов акций, системы безопасности, анализ текстов. Одной из наиболее сложных и востребованных способностей нейронных сетей является прогнозирование.

К задачам прогнозирования на бирже можно отнести прогнозирование краткосрочных и долгосрочных тенденций (сбор и хранение статистических данных; определение для рассматриваемого рынка или инструмента прогнозируемой величины и набора влияющих факторов; вычисление интересующей величины в соответствии с определенной функцией, значениями влияющих факторов на прогнозируемый момент и видом прогноза), а также прогнозирование тенденций фондового рынка.

Наибольшие проблемы применения искусственных нейронных сетей (ИНС) связаны как с освоением непрофильными специалистами фундаментальных понятий ИНС, так и с освоением приемов нейросетевого моделирования специфичных для той или иной задачи или предметной области.

Отсутствие адаптированной документации и обучающего курса, включающие подробное описание методов и примеров, индексный и предметный указатели, существенно ограничивает применение ИНС на фондовой бирже.

В настоящее время обучающие системы и тренажеры по применению ИНС практически отсутствуют или недоступны. Это обусловлено тем, что методики использования ИНС чрезвычайно многообразны.

ГЛАВА 3. ИССЛЕДОВАНИЕ ДИНАМИКИ ФИНАНСОВЫХ РЫНКОВ НЕЙРОСЕТЕВЫМИ МЕТОДАМИ

3.1. Задачи и методы нейросетевого анализа и прогнозов

В настоящей главе рассматриваются динамические процессы в трех секторах финансовых рынков – валютном, денежном и капитальном.

В настоящей работе мы не описываем этапов и методов этой предварительной обработки данных. Однако предварительный анализ позволил оптимизировать параметры нейросети, определить горизонт прогноза и провести сравнение качества предсказаний для временных рядов из различных секторов финансового рынка. В частности, для сравнения качества предсказания различных финансовых рядов нейросетью одной и той же архитектуры мы нормировали исходные данные к одинаковой дисперсии.

Рассмотрим динамические процессы на валютном, денежном, капитальном рынках в краткосрочные периоды, прогнозируя дневную динамику методами нейронных сетей.

Анализируемые в настоящем разделе финансовые инструменты– это фьючерсы:

· на курс доллар США – немецкая марка (обозначен как DM);

· на ставку процента ЛИБОР по евродолларам (ED);

· на фондовый американский индекс Стэндарт-энд-Пурс S&P500 (SP)

Данные по всем фьючерсам за период 04/01/2003-31/08/2007 гг. взяты из Free Historical Futures Data, поставляемых Turtle Trader Company.

Цель данного исследования – показать, что нейронные сети способны находить скрытые динамические закономерности в данных, на которых они обучаются, и (на этой основе) прогнозировать динамику, статистически оценивая результаты прогноза. Следует отметить, что хорошо обученная нейронная сеть часто находит в данных закономерности, не доступные человеку-аналитику.

Отметим две особенности нейросетевого анализа. Если в данных, на которых обучалась нейросеть, не отражены ценовые изменения, обусловленные экзогенными факторами (начало, окончание войн, реформа валютной системы, неожиданные результаты выборов президента, последствия террористических атак), то нейросеть не сможет предсказать похожие ценовые изменения в будущем. В то же время нейронные сети эффективны для предсказаний финансовых крахов, паник, если они порождены эндогенными факторами (искаженное распространение информации, рост курсов из-за больших покупок, падения из-за больших продаж, изменение ликвидности рынков, нелинейность корректировки курсов).

Итак, нейронные сети – это системы искусственного интеллекта, способные к самообучению в процессе решения задач.

Обучение сводится к обработке сетью множества примеров, состоящих из:

· набора пар входов и выходов (обучение с учителем) ;

· набора только входов (обучение без учителя).

В первом случае сеть по заданным входам генерирует свои выходы и сравнивает последние с выходами из обучающего набора. Для максимизации выходов, попадающих в допустимый интервал отклонения от обучающих, нейронная сеть модифицирует интенсивности связей между нейронами, из которых она построена, и таким образом самообучается. Прогонка обучающих примеров проводится, пока не достигается желаемая точность совпадения реальных и обучающих выходов. С этого момента нейросеть считается обученной, и может быть применена к обработке данных, похожих на обучающие, но не совпадающие с ними.

Каждый нейрон сети обладает собственным весом (положительным, отрицательным) и так называемой функцией активации. Нейрон обрабатывает входные сигналы, суммируя входы с весами и трансформируя полученный результат в выходной сигнал с помощью функции активации (линейной, нелинейной, стохастической). Нейроны сети взаимодействуют друг с другом в зависимости от топологии связей. Последние бывают полными (каждый с каждым), частичными (противоположность полной связи), с петлями обратных связей, без таковых. В каждой задаче требуется свой выбор архитектуры сети. Наличие обратных связей влияет на обучаемость сети (улучшая ее), тогда как степень внутренних связей определяет параллелизм вычислений. Современные многослойные нейросети мощнее, в частности, из-за того, что они формируют внутреннее представление задачи в так называемых скрытых слоях. Иерархические сети используются для распознавания образов. При этом внутренние слои играют роль «детекторов выученных свойств», поскольку активность паттернов в скрытых слоях есть кодирование того, что сеть «думает» о свойствах, содержащихся во входах.