Смекни!
smekni.com

Разработка конечного цифрового аппарата (стр. 3 из 5)

2.6 Применение ЦА

Термин "автомат", как правило, используется в двух аспектах. С одной стороны, автомат - это устройство, выполняющее некоторые функции без непосредственного участия человека. В этом смысле мы говорим, что ЭВМ – автомат, так как после загрузки программы и исходных данных ЭВМ решает заданную задачу без участия человека. С другой стороны, термин "автомат" как математическое понятие обозначает математическую модель реальных технических автоматов. В этом смысле автомат представляется как "черный ящик", имеющий конечное число входов и выходов и некоторое множество внутренних состояний Q = {q1(t), q2(t), ..., qn(t)}, в которые он под действием входных сигналов переходит скачкообразно, т. е. практически мгновенно, минуя промежуточное состояние. Конечно, это условие не выполняется в реальности, так как любой переходный процесс длится конечное время.

Автомат называется конечным, если множество его внутренних состояний и множество значений входных сигналов – конечные множества.

На практике часто используется понятие цифрового автомата, под которым понимают устройство, предназначенное для преобразования информации. С общей точки зрения, процесс получения информации есть ни что иное, как процесс снятия неопределенности в результате того, что из некоторой совокупности возможных в данной конкретной ситуации явлений выделяется явление, фактически имевшее место.

Таким образом, в понятии информации существенно не само происшедшее явление, а лишь его отношение к совокупности явлений, которые могли произойти.

Устройства, служащие для преобразования дискретной информации, называются дискретными автоматами.

В современных дискретных автоматах принято обычно отождествлять буквы используемого стандартного алфавита с цифрами той или иной системы счисления.

В состав цифровых автоматов обязательно входят запоминающие элементы(элементы памяти). Выходные сигналы в таких автоматах формируются в зависимости от входных сигналов и состояний, в которых находятся элементы памяти. Поэтому дискретные автоматы принято называть также цифровыми автоматами.

Основным качеством, выделяющим дискретные автоматы из числа всех других преобразователей информации, является наличие дискретного множества внутренних состояний и свойства скачкообразного перехода автомата из одного состояния в другое. Скачкообразность перехода означает возможность трактовать этот переход как мгновенный, хотя для любого реально существующего автомата имеет место конечная длительность переходных процессов, так что требование скачкообразности перехода не удовлетворяется.

Второе допущение состоит в том, что после перехода автомата в произвольное состояние переход в следующее состояние оказывается возможным не ранее, чем через некоторый фиксированный для данного автомата промежуток времени τ > 0, так называемый интервал дискретности автомата. Это допущение дает возможность рассматривать функционирование цифрового автомата в дискретном времени. При построении автоматов с дискретным автоматным временем различают синхронные и асинхронные автоматы. В синхронных автоматах моменты времени, в которые оказывается возможным изменение состояния автомата, определяются специальным устройством – генератором синхронизирующих импульсов. Соседние моменты времени оказываются при этом обычно разделенными равными временными промежутками.

В асинхронных автоматах моменты переходов из одного состояния в другое заранее не определены и могут совершаться через неравные между собой промежутки времени.

Изменения состояний цифрового автомата вызываются входными сигналами, которые возникают вне автомата и передаются в автомат по конечному числу входных каналов. В отношении входных сигналов цифровых автоматов принимаются два допущения: во-первых, для любого цифрового автомата число различных входных сигналов обязательно конечно, а, во-вторых, входные сигналы рассматриваются как причина перехода автомата из одного состояния в другое и относятся к моментам времени, определяемым соответствующими им переходами.

Отметим, что при таком допущении входной сигнал рассматривается как мгновенный, хотя в действительности он имеет конечную длительность. Особо следует подчеркнуть, что реальный физический входной сигнал, вызывающий изменение состояния автомата в момент времени t, может кончиться до наступления этого момента, однако, тем не менее, он относится именно к текущему моменту времени t, а не к предыдущему (t –1).

Результатом работы цифрового автомата является выдача выходных сигналов, передаваемых из автомата во внешние цепи по конечному числу выходных каналов. В отношении выходных сигналов вводятся допущения, аналогичные допущениям для входных сигналов. Во-первых, число различных выходных сигналов для любого цифрового автомата всегда конечно. Во-вторых, каждому отличному от нуля моменту автоматного времени относится соответствующий ему входной сигнал. Реальный физический выходной сигнал y(t), отнесенный к моменту времени t, появляется всегда после соответствующего этому же моменту времени входного сигнала x(t). Что же касается момента времени t перехода автомата из состояния q(t–1) в состояние q(t), то сигнал y(t) может фактически появится либо раньше, либо позже этого момента.

В первом случае принимается, что выходной сигнал y(t) однозначно определяется входным сигналом x(t) и состоянием q(t–1) автомата в предыдущий момент времени, во втором случае сигнал y(t) однозначно определяется парой (x(t), q(t)). Будем считать, что для любого момента времени всегда имеет место лишь одна из этих возможностей (одновременно для всех переходов).

Цифровые автоматы, в которых выходной сигнал y(t) определяется парой (x(t),q(t – 1)), будем называть автоматами первого рода, а автоматы, в которых сигнал y(t) определяется парой (x(t), q(t)), – автоматами второго рода.

Цифровой автомат (первого или второго рода) называется правильным, если выходной сигнал y(t) определяется одним лишь его состоянием (q(t –1) или q(t)) и не зависит явно от входного сигнала x(t).

Автоматы первого рода обычно называют автоматами Мили, а автоматы второго рода – автоматами Мура.

Общая теория автоматов при сделанных выше допущениях разбивается на две большие части, которым присвоены названия абстрактной теории автоматов и структурной теории автоматов. Различие между ними заключается в том, что в абстрактной теории не учитываются структура как самого автомата, так и структуры его входных и выходных сигналов. Входные и выходные сигналы рассматриваются при этом просто как буквы двух фиксированных для данного автомата алфавитов: входного и выходного. Не интересуясь способом построения автомата, абстрактная теория изучает лишь те переходы, которые претерпевает автомат под воздействием входных сигналов, и те выходные сигналы, которые он при этом выдает.

В противоположность абстрактной теории, структурная теория автоматов учитывает структуры автомата и его входных и выходных сигналов. В структурной теории изучаются способы построения автоматов из нескольких элементарных автоматов, способы кодирования входных и выходных сигналов элементарными сигналами,передаваемыми по реальным входным и выходным каналам.

Таким образом, структурная теория автоматов является продолжением и дальнейшим развитием абстрактной теории. В частности, задача синтеза идеализированного (без учета переходных процессов) цифрового автомата естественным образом подразделяется на этапы абстрактного и структурного синтеза.

Частным случаем дискретных автоматов являются автоматы, обладающие лишь одним внутренним состоянием. Такие автоматы называются комбинационными схемами или автоматами без памяти. Работа таких автоматов состоит в том,что они сопоставляют каждому входному сигналу x(t) выходной сигнал y(t).

Абстрактная теория автоматов без памяти совершенно тривиальна, а структурная теория таких автоматов много легче, чем теория произвольных автоматов с памятью. Основная идея излагаемой методики синтеза автоматов состоит в том, чтобы еще на уровне абстрактной теории преодолеть основные затруднения, вызванные наличием памяти, а на уровне структурной теории свести задачу синтеза автомата к задаче синтеза комбинационных схем.

3. РАЗРАБОТКА И ПОСТРОЕНИЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ КЦА

3.1 Кодирование состояний автомата

Каждое состояние автомата кодируется произвольным образом. Так как состояний 8, значит, чтобы закодировать все состояния, нужно использовать 3-ёх разрядный код, так как только 3-ёх разрядным кодом можно перебрать до 23 состояний.

3.2 Минимизация функции выходов автомата