Курсовая работа
по дисциплине «Алгоритмы с оценками»
На тему «Труднорешаемые задачи. Последовательный анализ вариантов»
Содержание
Введение
1. Задачи, NP-трудные в сильном смысле
1.1. Обслуживание требований без задержек
2.Алгоритм
2.1 Последовательный анализ вариантов
Заключение
Библиографический список
Введение
Большинство задач, интересных с практической точки зрения, имеют полиномиальные (работающие за полиномиальное время) алгоритмы решения. То есть время работы алгоритма на входе длины n составляет не более O(nk) для некоторой константы k (не зависящей от длины входа). Разумеется, не каждая задача имеет алгоритм решения, удовлетворяющий этому свойству. Некоторые задачи вообще не могут быть решены никаким алгоритмом. Классический пример такой задачи — «проблема остановки» (выяснить останавливается ли данная программа на данном входе). Кроме того, бывают задачи, для которых существует решающий их алгоритм, но любой такой алгоритм работает «долго» — время его работы не есть O(nk) ни для какого фиксированного числа k.
Если мы хотим провести пусть грубую, но формальную границу между «практическими» алгоритмами и алгоритмами, представляющими лишь теоретический интерес, то класс алгоритмов, работающих за полиномиальное время, является разумным первым приближением. Мы рассмотрим, руководствуясь [1], класс задач, называемых NP-полными. Для этих задач не найдены полиномиальные алгоритмы, однако и не доказано, что таких алгоритмов не существует. Изучение NP-полных задач связано с так называемым вопросом «P = NP». Этот вопрос был поставлен в 1971 году и является сейчас одной из наиболее сложных проблем теории вычислений.
Зачем программисту знать о NP-полных задачах? Если для некоторой задачи удается доказать ее NP-полноту, есть основания считать ее практически неразрешимой. В этом случае лучше потратить время на построение приближенного алгоритма, чем продолжать искать быстрый алгоритм, решающий ее точно.
1. Задачи, NP-трудные в сильном смысле
Приводятся примеры доказательств NP-трудности в сильном смысле ряда задач теории расписаний. Техника доказательства результатов такого рода во многом напоминает приемы которые использовались при установлении NP трудности (в обычном смысле) экстремальных задач теории расписаний. Для доказательства NP-трудности в сильном смысле тон или иной экстремальной задачи будем доказывать №" трудность в сильном смысле соответствующей задачи распознавания. Для этого достаточно показать, что к ней сводится некоторая известная NP –полная в сильном смысле задача. В качестве такой задачи в данном параграфе выбрана задача о 3-разбиении, которая заключается в следующем. Имеется множество
Существует ли такое разбиение мужества .V0 на трехэлементные подмножества N°, N*.....N° такие, что
Отметим, что условие
Чтобы обеспечить псевдополиномиальное сведение задачи с 3-раэбнении к некоторой задаче распознавания, необходимо преобразовать входную информацию задачи о 3-разбиении во входную информацию некоторой ее индивидуальной задачи распознавания. Число выполняемых при этом действий должно полиномиально зависеть от длины входа задачи о 3 разбиении, представленного в унарной системе счисления, другими словами, от величины
1.1 Обслуживание требований без задержек
Установим NP трудность в сильном смысле
Другими — словами, задачи и
Теорема 1.1. Задача
Доказательство. Сформулируем соответствующую задачу распознавания: определить, существует ли расписание s°, при котором
Положим и разобьем множество N на две группы: и-требования, обозначаемые Uij
Положим
1. Пусть задача о 3-разбиении имеет решение и
2. Пусть существует расписание s°. Так как
Рис.(1.1)
Прибор 1 завершает обслуживание всех требований не раньше момента времени у - Е. С учетом того, что задержки запрещены, последним требованием, которое обслуживает прибор 2, будет некоторое v-требование, а прибор 1 должен функционировать без простоев в интервале