Смекни!
smekni.com

Построение кодопреобразователя (стр. 2 из 8)

Элементы алгебры логики имеют следующие операции:

Конъюнкция(И, логическое умножение) - произведение двух высказываний Р и Q, результатом которого является истина, если оба высказывания истинны и ложь во всех других случаях.

Дизъюнкция(ИЛИ, логическая сумма) - сумма двух высказываний Р и Q; результатом является ложное высказывание, если оба высказывания ложные, и истинное во всех других случаях.

Инверсия(отрицание) - отрицанием высказывания Р называется высказывание истинное, если само высказывание Р ложное, или наоборот.

Для функции двух переменных, согласно ф.(1), существует четыре уникальных набора переменных. Функции отличаются друг от друга набором значений 0 и 1 в четырех разрядах кода значений функции. Общее количество функций на п-местном или п-разрядном наборе переменных равно:

(3).

Две функции равносильны друг другу, если они принимают на всех возможных наборах переменных одни и те же значения.

Аналитически это свойство описывается следующей формулой:

f1(xn-1, xn-2, …, x0) = f1(xn-1, xn-2, …, x0) (4)

Обе функции в ф.(4) могут иметь разные формы аналитической записи, но практически наиболее выгодной будет самая простая форма записи.

Система булевых функций W называется функционально полной, если для любой булевой функции п-переменных f(xn-1, хn-2, ..., х0) может быть построена равносильная ей функция комбинированием булевых переменных xn-1, хn-2, ..., х0 и функций системы W, взятых в любом конечном количестве экземпляров каждая. Такая система булевых функций (W) называется базисом.

Таким образом, базис - полная система функций алгебры логики (ФАЛ), с помощью которой любая ФАЛ может быть представлена суперпозицией исходных функций W.

Базисом является система функций И (конъюнкция), ИЛИ (дизъюнкция), НЕ, (инверсия), свойства которых были впервые изучены Дж. Булем.

Базис является минимальным, если удаление из него хотя бы одной функции превращает систему ФАЛ в неполную. Базис И, ИЛИ, НЕ - избыточный.

Для абстрактного математического описания цифрового автомата как кодопреобразователя используется представление 6-элементного множества S = {А, Х,У,d, l,a1,}.

Понятие множества - понятие, которое не имеет определения. Множества имеют свои подмножества, оно может быть конечным и бесконечным. Упорядоченным будет множество, в котором каждый элемент имеет своё место.

Множество будет состоять из следующих элементов:

А = {а1...,ап} -множество состояний автомата,

X = {х1...,хп} - множество входных сигналов,

Y = {у1.. .,уп} - множество выходных сигналов,

d - функция переходов абстрактного цифрового автомата,

l - функция выходов абстрактного цифрового автомата,

a1 - начальное состояние автомата (ai принадлежит А).

Для однозначного управления цифровым автоматом необходимо, чтобы он начинал работу с определённого начального состояния. Автомат является конечным, если А, X и Y не являются бесконечными множествами. Теоретически все элементы множеств А, X, Y могут быть закодированы числами в системе счисления с любым основанием, но на практике всегда используется двоичная система счисления. Согласно структурной схеме (рис.1), коды наборов переменных комбинационных схем определяются в результате конкатенации кодов входных сигналов и кодов состояний блока памяти. Как наборы входных переменных, так и коды состояний блока памяти в общем случае содержат запрещённые комбинации, поэтому системы функций алгебры логики, описывающие комбинационные схемы, не будут полностью определёнными.

Используя понятия и определения алгебры логики, составим таблицу (соответствия) значений входных и выходных сигналов.

Десятичные цифры Входной код 4311 Выходной код 5311
0 0000 0000
1 0001 0001
2 0010 0010
3 0011 0011
4 0100 0100
5 0101 0101
6 1000 1010
7 1001 1011
8 1100 1110
9 1101 1111

При рассмотрении конечного автомата необходимо рассмотреть условие автоматности, то есть выполнение следующих условий:

1) Длина входного слова должна соответствовать длине выходного слова. В общем случае при несоответствии входного и выходного слов недостающие фрагменты заполняются пустыми символами (0);

2) Минимум три первых символа входных и выходных слов должны соответствовать друг другу. В нашем случае это условие частично не выполняется, поэтому для соблюдения условия автоматности кодопреобразователя к входному и выходному словам добавим пустые символы (0).

При этом таблица соответствия примет вид:

Десятичные цифры Входной код 4311 Выходной код 5311
0 0000000 0000000
1 0001000 0000001
2 0010000 0000010
3 0011000 0000011
4 0100000 0000100
5 0101000 0000101
6 1000000 0001010
7 1001000 0001011
8 1100000 0001110
9 1101000 0001111

Часто на практике используется две разновидности цифровых автоматов, отличающихся способом формирования выходных сигналов:

- при описании функционирования автомата выражениями:

a(t+l) = 5[a(t),z(t)],

w(t) = l[a(t), z(t)] - он называется автоматом Мили;

- при описании функционирования автомата выражениями:

a(t+1) = d[a(t),z(t)],

w(t) = l[а(t)] - он называется автоматом Мура.

В этих выражениях t - текущий момент дискретного автоматного времени, t+1 -следующий момент дискретного автоматного времени.


Понятия теории графов

Графами называют взаимосвязь двух множеств состоящих из множества вершин и множества рёбер, индуцируемых (связанных) между собой.

Полный граф - это граф, не имеющий петель, кратности ребер, и все его вершины связаны между собой.

Неориентированный граф - граф, не имеющий указания направлений ребер, при переходе из одной вершины в другую.

Ориентированный (полный) граф - граф с ребрами, указывающими конкретное направление при переходе из одной вершины в другую.

Граф-дерево - это слабосвязанный граф, у которого если удалить одно ребро, то он распадается на два графа.

Граф автомата - ориентированный связный граф, вершины которого соответствуют состояниям, а дуги - переходам между ними.

Теория графов имеет большие приложения, так как язык теории, с одной стороны, очевиден, а, с другой стороны, удобен в нормальном исследовании. При полном изображении графа не все детали рисунка имеют одинаковое значение, а именно геометрические свойства рёбер (кривизна, длина и т.д.) и расположение вершин на плоскости относительно друг друга.

Две вершины графа автомата ат и as (исходное состояние и состояние перехода) соединяются дугой (ребром), направленной от ат в as. Дуге (ат, as) графа автомата приписывается входной сигнал х и выходной сигнал у, если он определён, и, в противном случае, ставится прочерк. Если переход автомата из состояния ат в состояние as происходит под действием нескольких входных сигналов, то дуге (am, as) приписываются все эти входные и соответствующие выходные сигналы.

При описании автомата Мура в виде графа выходной сигнал yзаписывается внутри вершины ат или рядом с ней, а входной сигнал х над дугой (ребром), демонстрирующей переход из одного состояния в другое.

При описании автомата Мили в виде графа внутри вершины записывается состояние, в которое переходит автомат, а над дугой (ребром), демонстрирующей переход из одного состояния автомата в другое, записывается дробь, в числителе которой указывается входной сигнал, а в знаменателе - выходной сигнал.

Для задания функций переходов и выходов построим граф-дерево автомата Мура, а затем автомата Мили. При использовании табличного описания автомата Мура таблицы переходов автоматов Мили и Мура совпадут, а таблица выходов автомата Мили получится из таблицы переходов заменой as символом выходного сигнала.

В технических целях используются только детерминированные цифровые автоматы, в которых выполнено условие однозначности переходов: - автомат, находящийся в некотором состоянии, под действием любого входного сигнала не может перейти более чем в одно состояние. Применительно к табличному способу задания описания автоматов это означает, что в клетках переходов/выходов указывается только по одному состоянию/выходному сигналу. Применительно к графическому способу задания описания автоматов это означает, что в графе автомата из любой вершины не могут выходить две или более дуги, отмеченные одним и тем же входным сигналом.

Устойчивым состоянием автомата называется такое состояние, что для любого х, d(am, x) = as, имеет место d(as, x) = as. Это значит, что если автомат перешёл в некоторое состояние х, то выйти из этого состояния может только под действием другого сигнала.