Смекни!
smekni.com

Построение кодопреобразователя (стр. 7 из 8)

В картах наборы переменных, на которых функция принимает единичные значения, помечаются нечисловыми символами. Карта с нанесёнными на ней значениями ФАЛ называется диаграммой.

Карты, на которых коды наборов изображаются в восьмеричной системе счисления, называются картами Вейча.

Минимизация функций по методу Квайна

При минимизации по методу Квайна в базисе И, ИЛИ, НЕ исходная ФАЛ задаётся в СДНФ Целью минимизации является нахождение всех первичных импликант и выбор некоторых из них для минимальной записи функции.

Импликанта функции - некоторая логическая функция, обращаемая в нуль при наборе переменных, на котором сама функция также равна нулю.

Поэтому любой конъюнктивный терм, входящий в состав СДНФ, или группа термов, соединённых знаками дизъюнкции являются импликантами исходной ФАЛ. Импликанты имеют единичные значения только на подмножестве наборов из множества наборов, на которых исходная ФАЛ равна единице.

Первичная импликанта функции - импликанта типа элементарной конъюнкции некоторых переменных, никакая часть которой уже не является импликантой.

Задача минимизации по методу Квайна решается путём попарного сравнения всех импликант, входящих в ФАЛ, с целью выявления возможности их неполного склеивания по какой-то переменной на промежуточных этапах. При склеивании снижается ранг термов. Склеивание проводится до тех пор, пока не останется ни одного терма, допускающего склеивание с каким-либо другим термом. Термы, подвергшиеся склеиванию, отмечаются. Неотмеченные термы представляют собой первичные импликанты. После получения множества всех первичных импликант исследуется возможность нахождения простейшей записи ФАЛ. Для этого составляется таблица, в первой строке которой записаны минтермы исходной ФАЛ, а в первом столбце записаны все найденные первичные импликанты. Клетки этой таблицы помечаются в том случае, если первичная импликанта входит в состав какого-либо минтерма исходной ФАЛ. После этого задача упрощения сводится к тому, чтобы найти такое минимальное количество первичных импликант, которые покрывают все столбцы минтермов исходной ФАЛ.

Минимизация функций по методу Мак-Класки

Недостатком метода Квайна является - необходимость исчерпывающего попарного сравнения или сопоставления всех минтермов на этапе нахождения первичных импликант. С ростом числа минтермов увеличивается количество попарных сравнений.

Числовое представление ФАЛ позволяет упростить самый трудоёмкий первый этап. Все минтермы СДНФ ФАЛ записываются в виде их двоичных кодов, а все коды разбиваются по числу единиц на непересекающиеся группы.

Минтермы, подлежащие склеиванию, различаются только по одной переменной, а их коды - только в одном разряде. По этой причине сравнению подлежат только двоичные коды минтермов соседних групп.

Рассмотрев несколько методов минимизации ФАЛ, можно сделать вывод о том, что для решения нашей задачи наиболее подходящим является метод Мак-Класки.

Минимизируем Y:

Y=010001v010010v010011v010100v010101v010110v010111v011000v011001v110001v110010v110011v110100v110101v110110v110111v111000v111001

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 010001 21
010010 22
010100 24
011000 30
3 010011 23
010101 24
010110 26
011001 31
110001 61
110010 62
110100 64
111000 70
4 010111 27
110011 63
110101 65
110110 66
111001 71
5 110111 67

Склеивание 1

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 0100-1 21, 23
010-01 21, 25
01-001 21, 31
-10001 21, 61
01001- 22, 23
010-10 22, 26
-10010 22, 62
01010- 24, 25
0101-0 24, 26
-10100 24, 64
01100- 30, 31
-11000 30, 70
3 010-11 23, 27
-10011 23, 63
0101-1 25, 27
-10101 25, 65
01011- 26, 27
-010110 26, 66
-11001 31, 71
1100-1 61, 63
110-01 61, 65
11-001 61, 71
11001- 62, 63
110-10 62, 66
11010- 64, 65
1101-0 64, 65
11100- 64, 66
4 -10111 27, 67
110-11 63, 67
1101-1 65, 67
11011- 66, 67

Склеивание 2

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 010--1 21, 23, 25, 27
-100-1 21, 23, 61, 63
-10-01 21, 25, 61, 65
-1-001 21, 31, 61, 71 A
010-1- 22, 23, 26, 27
-1001- 22, 23, 62, 63
-10-10 22, 26, 62, 63
0101-- 24, 25, 26, 27
-1010- 24, 25, 64, 65
-101-0 24, 26, 64, 66
-1100- 30, 70, 31, 71 B
3 -10-11 23, 27, 63, 67
-101-1 25, 27, 65, 67
-1011- 26, 27, 66, 67
110--1 61, 63, 65, 67
110-1- 62, 63, 66, 67
1101-- 64, 65, 66, 67

Склеивание 3

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 -10--1 21, 23, 25, 27, 61, 63, 65, 67 C
-10-1- 22, 23, 26, 27, 62, 63, 66, 67 D
-101-- 24, 25, 26, 27, 64, 65, 66, 67 E
21 22 23 24 25 26 27 30 31 61 62 63 64 65 66 67 70 71
A ´ ´ ´ ´
B Ä ´ Ä ´
C ´ ´ ´ ´ ´ ´ ´ ´
D Ä ´ ´ ´ Ä ´ ´ ´
E Ä ´ ´ ´ Ä ´ ´ ´

Y= -1100-v-10-1-v-101--

Минимизируем D4

D4 = 001001v001010v001011v001100v001101v001110v001111v010100v

v010110v010111v011000v011001v101011v110110

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 001001 11
001010 12
001100 14
010100 24
011000 30
3 001011 13
001101 15
001110 16
010110 26
011001 31
4 001111 17
010111 27
101011 53
110110 67

Склеивание 1

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 0010-1 11, 13
001-01 11, 15
0-1001 11, 31 A
00101- 12, 13
001-10 12, 16
00110- 14, 15
0011-0 14, 16
0101-0 24, 26 B
01100- 30, 31 C
3 001-11 13, 17
-01011 13, 53 D
0011-1 15, 17
00111- 16, 17
01011- 26, 27 E
-10110 26, 67 F

Склеивание 2

i xQ4Q3Q2Q1Q0 Восьмеричное число
2 001--1 11, 13, 15, 17 G
001-1- 12, 13, 16, 17 H
0011-- 14, 15, 16, 17 I
11 12 13 14 15 16 17 24 26 27 30 31 53 67
A ´ ´
B Ä ´
C Ä ´
D ´ Ä
E ´ Ä
F ´ Ä
G ´ ´ ´ ´
H Ä ´ ´ ´
I Ä ´ ´ ´

D4= 0101-0v01100-v-01011v01011-v-10110v001-1-v0011--

Минимизируем D3

D3 = 000100v000101v000110v000111v001000v001110v010001v010010v

v010011v010110v010111v100011v100101v100111v110001

i xQ4Q3Q2Q1Q0 Восьмеричное число
1 000100 4
001000 10 A
2 000101 5
000110 6
010001 21
010010 22
3 000111 7
001110 15
010011 23
010110 26
100011 43
100101 45
110001 61
4 010111 27
100111 47

Склеивание 1

i xQ4Q3Q2Q1Q0 Восьмеричное число
1 00010- 4, 5
0001-0 4, 6
2 0001-1 5, 7
-00101 5, 45
00011- 6, 7
00-110 6, 15 C
0-0110 6, 26
0100-1 21, 23 D
-10001 21, 61 E
01001- 22, 23
010-10 22, 26
3 0-0111 7, 27
-00111 7, 47
010-11 23, 27
01011- 26, 27
100-11 43, 47 F
1001-1 45, 47

Склеивание 2