Таблица 2.2 Построение кода Шеннона
Буква | Вероятность p m | Кумулятивная вероятность q m | Длина кодо- вого слова l m | Двоичная запись [ q]2 | Кодовое слово c m |
a | 0,35 | 0,00 | 2 | 0,00… | 00 |
b | 0,20 | 0,35 | 3 | 0,0101… | 010 |
c | 0,15 | 0,55 | 3 | 0,10001… | 100 |
d | 0,10 | 0,70 | 4 | 0,10110… | 1011 |
e | 0,10 | 0,80 | 4 | 0,11001… | 1100 |
f | 0,10 | 0,90 | 4 | 0,11100… | 1110 |
Докажем однозначную декодируемость кода Шеннона. Для этого выберем сообщения с номерами i и j , i < j . Кодовое слово ci для i заведомо короче, чем слово cj для j , поэтому достаточно доказать, что эти слова отличаются в одном из первых li символов.
Рассмотрим разность qj − qi =Σ pk − Σ pk =Σ pk ≥ pi
Вспомним, что длина слова и его вероятность связаны соотношением
li = [− log pi ]≥ − log pi .
Поэтому pi ≥2-li.
С учетом этого неравенства
q j − q i ≥ 2-li
В двоичной записи числа в правой части мы имеем после запятой li −1 нулей и единицу в позиции с номером li. Это означает, что по меньшей мере в одном из li разрядов слова ciи cjотличаются и, следовательно, ciне является префиксом для cj. Поскольку это верно для любой пары слов, то код является префиксным.
Заметим, что длины кодовых слов в коде Шеннона точно такие же, какие были выбраны при доказательстве прямой теоремы кодирования. Повторяя выкладки, получим уже известную оценку для средней длины кодовых слов
l ≤ H +1.
Примечательно, что при построении кода Шеннона мы выбрали длины кодовых слов приблизительно равными (чуть большими) собственной информации соответствующих сообщений. В результате средняя длина кодовых слов оказалось приблизительно равной (чуть большей) энтропии ансамбля.
2.3 Пример Кода Шеннона
Допустим, нужно закодировать некоторое сообщение: AABCDAABC
Имеем :
A - 5 5/10 = 0.5
B - 2 2/10 = 0.2
C - 2 2/10 = 0.2
D - 1 1/10 = 0.1
Длина всего сообщения 10 (Вычисляется веpоятность встpечаемости каждого символа и pасполагаем их в столбик в поpядке yбывания веpоятностей)
После этого стpоим кодовые комбинации пpостым методом. Делим столбик с веpоятностями таким обpазмо, чтобы сyмма веpоятностей веpхней части pавнялась пpиблизительно сyмме веpоятностей нижней части
0.5 - пеpвая часть = 0.5
-----
0.2 \
0.2 | - втоpая часть = 0.5
0.1 /
Напpитив веpоятностей веpхней части пpоставляем нyли, напpотив нижней - еденицы. В нашем пpимеpе полyчим.
0.5 0
0.2 1
0.2 1
0.1 1
Пpделываем потом то же с pазделенными частями. В конце-концов пpидем к томy, что делить больше нечего.
А 0.5 0
B 0.2 10
C 0.2 110
D 0.1 111
Итого - AABCDAABC = 0 0 10 110 111 0 0 10 110
Пpичем закодиpованное сообщение (это видно) не может быть pаскодиpовано несколькими способами, хотя длина кодов символов отличается. Чтобы пpочитать закодиpованное сообщение стpоится бинаpное деpево. В нашем слyчае оно бyдет такое.
()
/ \
0(A) 1
/ \
0(B) 1
/ \
0(C) 1(D)
Вот еще пpимеp составления кодовых комбинаций по веpоятносям:
0.3 00
0.25 01
--------------- (пеpвое деление)
0.1 100
0.1 101
------------- (втоpое деление)
0.1 1100
0.05 1101
----------- (тpетье деление)
0.05 1110
0.05 1111
2.4 Пример кодирования и декодирования методом Шеннона-Фано
С помощью табл. 4 можно закодировать и декодировать любое сообщение. В виде примера запишем двоичным кодом фразу: "Теория информаций"
0 111 010000 11 01 000 11 011 11 0000
01101000111111 111 00110 100
11 0000 10111111 10101100110
Отметим, что здесь нет необходимости отделять буквы друг от друга специальным знаком, т.к. и без этого декодирование выполняется однозначно. Убедимся в этом, декодируя с помощью табл. 4 следующую фразу:
10011100110011001001111010000
1011100111001001101010000110101
010110000110110110
Результат декодирования - фраза "способ кодирования". При таком кодировании любая ошибка (случайное перепутывание знаков 0 и 1) губительна, т.к. декодирование всего следующего за ошибкой текста становится невозможным. Поэтому данный принцип кодирования используется тогда, когда ошибки при кодировании и передаче сообщения исключены.
Заключение
В ходе курсовой работы была рассмотрена задача кодирования, которая включает в себя:
1.Обеспечение экономичности передачи информации посредством устранения избыточности.
2. Обеспечение надежности (помехоустойчивости) передачи информации
3.Согласование скорости передачи информации с пропускной способностью канала
Задача кодирования является одним из главных понятий информатики, так как кодирование предшествует передаче и хранению информации, и, соответственно, является основой их успешного осуществления.
При передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Эта проблема решается с помощью помехоустойчивого кодирования. Помехоустойчивое кодирование передаваемой информации позволяет в приемной части системы обнаруживать и исправлять ошибки. Коды, применяемые при помехоустойчивом кодировании, называются корректирующими кодами. Впервые, исследование эффективного кодирования произвел Клод Шеннон. Для теории связи важнейшее значение имеют две теоремы, доказанные Шенноном.
В работе были рассмотрены эти теоремы, и можно прийти к выводу, что первая – затрагивает ситуацию с кодированием при передаче сообщения по линии связи, в которой отсутствуют помехи, искажающие информацию, т.е. эта теорема является эталоном, какими должны быть помехоустойчивые коды, Вторая теорема относится к реальным линиям связи с помехами.
В ходе курсовой работы были составлены примеры кодирования, на основе первой теоремы Шеннона. Это кодирования является достаточно эффективным, так как получаемый код практически не имеет избыточности, но, к сожалению, в реальных линиях связи множество помех, и такой результат недостижим. Поэтому код Шеннона не является таким же эффективным как, например код Хафмена. Но, несмотря на это нужно отметить, что Клод Шеннон был одним из основателей теории кодирования и его работы внесли огромный вклад в развитие информатики.