Смекни!
smekni.com

Задача кодирования (стр. 7 из 7)

Таблица 2.2 Построение кода Шеннона

Буква Вероятность p m Кумулятивная вероятность q m Длина кодо- вого слова l m Двоичная запись [ q]2 Кодовое слово c m
a 0,35 0,00 2 0,00… 00
b 0,20 0,35 3 0,0101… 010
c 0,15 0,55 3 0,10001… 100
d 0,10 0,70 4 0,10110… 1011
e 0,10 0,80 4 0,11001… 1100
f 0,10 0,90 4 0,11100… 1110

Докажем однозначную декодируемость кода Шеннона. Для этого выберем сообщения с номерами i и j , i < j . Кодовое слово ci для i заведомо короче, чем слово cj для j , поэтому достаточно доказать, что эти слова отличаются в одном из первых li символов.

Рассмотрим разность qj − qi =Σ pk − Σ pk =Σ pk ≥ pi

Вспомним, что длина слова и его вероятность связаны соотношением

li = [− log pi ]≥ − log pi .

Поэтому pi ≥2-li.

С учетом этого неравенства

q j − q i ≥ 2-li

В двоичной записи числа в правой части мы имеем после запятой li −1 нулей и единицу в позиции с номером li. Это означает, что по меньшей мере в одном из li разрядов слова ciи cjотличаются и, следовательно, ciне является префиксом для cj. Поскольку это верно для любой пары слов, то код является префиксным.

Заметим, что длины кодовых слов в коде Шеннона точно такие же, какие были выбраны при доказательстве прямой теоремы кодирования. Повторяя выкладки, получим уже известную оценку для средней длины кодовых слов

l ≤ H +1.

Примечательно, что при построении кода Шеннона мы выбрали длины кодовых слов приблизительно равными (чуть большими) собственной информации соответствующих сообщений. В результате средняя длина кодовых слов оказалось приблизительно равной (чуть большей) энтропии ансамбля.

2.3 Пример Кода Шеннона

Допустим, нужно закодировать некоторое сообщение: AABCDAABC

Имеем :

A - 5 5/10 = 0.5

B - 2 2/10 = 0.2

C - 2 2/10 = 0.2

D - 1 1/10 = 0.1

Длина всего сообщения 10 (Вычисляется веpоятность встpечаемости каждого символа и pасполагаем их в столбик в поpядке yбывания веpоятностей)

После этого стpоим кодовые комбинации пpостым методом. Делим столбик с веpоятностями таким обpазмо, чтобы сyмма веpоятностей веpхней части pавнялась пpиблизительно сyмме веpоятностей нижней части

0.5 - пеpвая часть = 0.5

-----

0.2 &bsol;

0.2 | - втоpая часть = 0.5

0.1 /

Напpитив веpоятностей веpхней части пpоставляем нyли, напpотив нижней - еденицы. В нашем пpимеpе полyчим.

0.5 0

0.2 1

0.2 1

0.1 1

Пpделываем потом то же с pазделенными частями. В конце-концов пpидем к томy, что делить больше нечего.

А 0.5 0

B 0.2 10

C 0.2 110

D 0.1 111

Итого - AABCDAABC = 0 0 10 110 111 0 0 10 110

Пpичем закодиpованное сообщение (это видно) не может быть pаскодиpовано несколькими способами, хотя длина кодов символов отличается. Чтобы пpочитать закодиpованное сообщение стpоится бинаpное деpево. В нашем слyчае оно бyдет такое.

()

/ &bsol;

0(A) 1

/ &bsol;

0(B) 1

/ &bsol;

0(C) 1(D)

Вот еще пpимеp составления кодовых комбинаций по веpоятносям:

0.3 00

0.25 01

--------------- (пеpвое деление)

0.1 100

0.1 101

------------- (втоpое деление)

0.1 1100

0.05 1101

----------- (тpетье деление)

0.05 1110

0.05 1111

2.4 Пример кодирования и декодирования методом Шеннона-Фано

С помощью табл. 4 можно закодировать и декодировать любое сообщение. В виде примера запишем двоичным кодом фразу: "Теория информаций"

0 111 010000 11 01 000 11 011 11 0000

01101000111111 111 00110 100

11 0000 10111111 10101100110

Отметим, что здесь нет необходимости отделять буквы друг от друга специальным знаком, т.к. и без этого декодирование выполняется однозначно. Убедимся в этом, декодируя с помощью табл. 4 следующую фразу:

10011100110011001001111010000

1011100111001001101010000110101

010110000110110110

Результат декодирования - фраза "способ кодирования". При таком кодировании любая ошибка (случайное перепутывание знаков 0 и 1) губительна, т.к. декодирование всего следующего за ошибкой текста становится невозможным. Поэтому данный принцип кодирования используется тогда, когда ошибки при кодировании и передаче сообщения исключены.


Заключение

В ходе курсовой работы была рассмотрена задача кодирования, которая включает в себя:

1.Обеспечение экономичности передачи информации посредством устранения избыточности.

2. Обеспечение надежности (помехоустойчивости) передачи информации

3.Согласование скорости передачи информации с пропускной способностью канала

Задача кодирования является одним из главных понятий информатики, так как кодирование предшествует передаче и хранению информации, и, соответственно, является основой их успешного осуществления.

При передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Эта проблема решается с помощью помехоустойчивого кодирования. Помехоустойчивое кодирование передаваемой информации позволяет в приемной части системы обнаруживать и исправлять ошибки. Коды, применяемые при помехоустойчивом кодировании, называются корректирующими кодами. Впервые, исследование эффективного кодирования произвел Клод Шеннон. Для теории связи важнейшее значение имеют две теоремы, доказанные Шенноном.

В работе были рассмотрены эти теоремы, и можно прийти к выводу, что первая – затрагивает ситуацию с кодированием при передаче сообщения по линии связи, в которой отсутствуют помехи, искажающие информацию, т.е. эта теорема является эталоном, какими должны быть помехоустойчивые коды, Вторая теорема относится к реальным линиям связи с помехами.

В ходе курсовой работы были составлены примеры кодирования, на основе первой теоремы Шеннона. Это кодирования является достаточно эффективным, так как получаемый код практически не имеет избыточности, но, к сожалению, в реальных линиях связи множество помех, и такой результат недостижим. Поэтому код Шеннона не является таким же эффективным как, например код Хафмена. Но, несмотря на это нужно отметить, что Клод Шеннон был одним из основателей теории кодирования и его работы внесли огромный вклад в развитие информатики.