Смекни!
smekni.com

Основы графической визуализации вычислений (стр. 1 из 4)

Основы графической визуализации вычислений

Особенности графики системы MATLAB

· Построение графика функций одной переменной

· Построение графиков точками и отрезками прямых

· Графики в логарифмическом и полулогарифмическом масштабе

· Гистограммы и диаграммы

· Графики специальных типов

· Создание массивов данных для трехмерной графики

· Построение графиков трехмерных поверхностей, сечений и контуров

· Средства управления подсветкой и обзором фигур

· Средства оформления графиков

· Одновременный вывод нескольких графиков

· Управление цветовой палитрой

· Окраска трехмерных поверхностей

· Двумерные и трехмерные графические объекты

Основные отличительные черты графики MATLAB

· существенно улучшенный интерфейс графических окон;

· введение новой панели инструментов Camera для интерактивного изменения условий видимости объекта;

· расширенные возможности форматирования графики;

· возможность создания графики в отдельных окнах;

· возможность вывода нескольких графических окон;

· возможность перемещения окон по экрану и изменения их размеров;

· возможность перемещения области графики внутри графического окна;

· задание различных координатных систем и осей;

· высокое качество графики;

· широкие возможности использования цвета;

· легкость установки графических признаков - атрибутов;

· снятие ограничений на число цветов;

· обилие параметров команд графики;

· возможность получения естественно выглядящих трехмерных фигур и их сочетаний;

· простота построения трехмерных графиков с их проекцией на плоскость;

· возможность построения сечений трехмерных фигур и поверхностей плоскостями;

· функциональная многоцветная и полутоновая окраска;

· возможность имитации световых эффектов при освещении фигур точечным источником света;

· возможность создания анимационной графики;

· возможность создания объектов для типового интерфейса пользователя.

Построение графика функций одной переменной

В режиме непосредственных вычислений доступны практически все возможности системы. Широко используется построение графиков различных функций, дающих наглядное представление об их поведении в широком диапазоне изменения аргумента. При этом графики строятся в отдельных масштабируемых и перемещаемых окнах.


Рассмотрим простейший пример - построение графика синусоиды. MATLAB строит графики функций по ряду точек, соединяя их отрезками прямых, т. е. осуществляя линейную интерполяцию функции в интервале между смежными точками. Зададим интервал изменения аргумента xот 0 до 10 с шагом 0.1. Для построения графика достаточно вначале задать вектор х=0:0.1:10, а затем использовать команду построения графиков plot (sin(x)).

Вектор xзадает интервал изменения независимой переменной от 0 до 10 с шагом 0.1. Функция plotстроит не истинный график функции sin(x), а лишь заданное числом элементов вектора xчисло точек. Эти точки затем просто соединяются отрезками прямых, т. е. осуществляется кусочно-линейная интерполяция данных графика. При 100 точках полученная кривая глазом воспринимается как вполне плавная, но при 10 - 20 точках она будет выглядеть состоящей из отрезков прямых.

MATLAB строит графики в отдельных окнах, называемых графическими окнами. В главном меню окна команды пункта меню Tools (Инструменты), позволяют вывести или скрыть инструментальную панель. Средства этой панели позволяют легко управлять параметрами графиков и наносить на них текстовые комментарии в любом месте.

Построение в одном окне графиков нескольких функций

Построим графики сразу трех функций:sin(x), cos(x) и sin(x)/х. Прежде всего, отметим, что эти функции могут быть обозначены переменными, не имеющими явного указания аргумента в виде у (x):

>>y1=sin(x); y2=cos(x); y3=sin(x)/x;

Такая возможность обусловлена тем, что эти переменные являются векторами - как и переменная x. Теперь можно использовать одну из ряда форм команды

plot: plot(a1, f1, a2, f2, a3, f3,...).

где a1, a2, a3,…- векторы аргументов функций, а f1, f2, f3,... - векторы значений функций, графики которых строятся в одном окне. В нашем случае для построения графиков указанных функций мы должны записать следующее:

>> plot (x, y1, x, y2, x, y3)

Можно ожидать, что MATLAB в этом случае построит, как обычно, точки графиков этих функций и соединит их отрезками линий. Но, если мы выполним эти команды, то никакого графика не получим вообще. Не исключен даже сбой в работе программы. Причина этого казуса возникнет при вычислении функции y3=sin(x)/x, если x представляет собой массив (вектор), то нельзя использовать оператор матричного деления /.

Чтобы получить график, надо вычислять отношение sin(x) к x с помощью оператора поэлементного деления массивов ./.

>>y1=sin(x); y2=cos(x); y3=sin(x)./x;

Warning: Divide by zero.

(Type "warning off MATLAB:divideByZero" to suppress this warning.)

>> plot(x,y1,x,y2,x,y3)

MATLAB построил графики всех трех функций, но в окне командного режима появилось предупреждение о делении на 0 - в момент, когда х=0. Это говорит о том, что plot «не знает» о том, что неопределенность sin(x)/x=0/0 устранима и дает 1. Это недостаток практически всех систем для численных вычислений.

Графическая функция fplot

MATLAB имеет средства для построения графиков и таких функций, как sin(x)/x, которые имеют устранимые неопределенности. Это делается, с помощью другой графической команды –

fplot: fplot('f(x)', [xmin, xmax])


Она позволяет строить функцию, заданную в символьном виде, в интервале изменения аргумента х от xmin до xmax без фиксированного шага изменения х. Хотя в процессе вычислений предупреждение об ошибке (деление на 0) выводится, график строится правильно, при х=0 sinx/x=1. Команда gridon (сетка)- включает отображение сетки, которая строится пунктирными линиями.

>> fplot('sin(x)/x', [-15,15]); grid on

Построение графиков отрезками прямых

Для отображения функции одной переменной у (x)используются графики в декартовой (прямоугольной) системе координат. При этом обычно строятся две оси: горизонтальная X и вертикальная Y, и задаются координаты xи у, определяющие узловые точки функции у(x).

Команда plotслужит для построения графиков функций в декартовой системе координат. Эта команда имеет ряд параметров, рассматриваемых ниже.

· plot (X, Y) — строит график функции у(х),координаты точек (х, у) которой берутся из векторов одинакового размера Y и X. Если X или Y — матрица, то строится семейство графиков по данным, содержащимся в колонках матрицы.


Приведенный ниже пример иллюстрирует построение графиков двух функций — sin(x)и cos(x),значения, функции которых содержатся в матрице Y, а значения аргумента ххранятся в векторе X:

>> x=[0 1 2 3 4 5];

>> y1=sin(x); y2=cos(x);

>> plot(x,y1,x,y2)

На рисунке показан график функций из этого примера. В данном случае отчетливо видно, что график состоит из отрезков, и если вам нужно, чтобы отображаемая функция имела вид гладкой кривой, необходимо увеличить количество узловых точек. Расположение их может быть произвольным.

· plot(Y) — строит график у(x),где значения yберутся из вектора Y, а xпредставляет собой индекс соответствующего элемента. Если Y содержит комплексные элементы, то строится график plot (real (Y), imag(Y)). Во всех других случаях мнимая часть данных игнорируется.

Пример использования команды plot(Y):

>> x=-2*pi:0.02*pi:2*pi;

>> y=sin(x)+i*cos(3*x);

>> plot(y)


plot(X,Y,S) — аналогична командеplot(X,Y), но тип линии графика можно задавать с помощью строковой константы S.

Значениями константы S могут быть следующие символы:

Цвет линии Тип точки Тип линии
Желтый y Точка . Сплошная -
Фиолетовый m Окружность 0 Двойной пунктир ;
Голубой c Крест x Штрих-пунктир -.
Красный r Плюс + Штриховая --
Зеленый g Звездочка *
Синий b Квадрат s
Белый w Ромб d
Черный k Треугольник (вниз) v
Треугольник (вверх) ^
Треугольник (влево) <
Треугольник (вправо) >
Пятиугольник p
Шестиугольник h

Таким образом, с помощью строковой константы S можно изменять цвет линии, представлять узловые точки различными отметками (точка, окружность, крест, треугольник с разной ориентацией вершины и т. д.) и менять тип линии графика.

· рlot (X1,Y1, S1, Х2, Y2, S2, ХЗ, Y3, S3,...) - эта команда строит на одном графике ряд линий, представленных данными вида (X.,Y.,S.), где X. иY. — векторы или матрицы, а S. — строки. С помощью такой конструкции возможно построение, например, графика функции линией, цвет которой отличается от цвета узловых точек. Так, если надо построить график функции линией синего цвета с красными точками, то вначале надо задать построение графика с точками красного цвета (без линии), а затем графика только линии синего цвета (без точек).

При отсутствии указания на цвет линий и точек он выбирается автоматически из таблицы цветов (белый исключается). Если линий больше шести, то выбор цветов повторяется. Для монохромных систем линии выделяются стилем.

Рассмотрим пример построения графиков трех функций с различным стилем представления каждой из них: