Рис.1.11 Структура прибыли ГУП ОЮ 241/16 в 2003 - 2005 году.
Значения экономических переменных как правило объясняются влиянием одного а чаще нескольких факторов. В случае множественной связи в результате проведения n наблюдений обычно пытаются установить линейную зависимость результативного признака (y) от некоторого множества mфакторных признаков (xi). Говоря о линейной зависимости, мы имеем в виду модель множественной линейной регрессии, теоретическое уравнение которой имеет вид:
где
- коэффициенты при факторных признаках; - случайная ошибка.Критерием правильности нахождения вектора
является условие минимальности значения суммы квадратов ошибок по всем наблюдениям - . [8]Рассмотрим конкретную модель связи с целью исследования зависимости между объемом выпуска продукции и основными факторами, влияющими на его величину и выдвинем гипотезу о существовании между рассматриваемыми признаками множественной линейной связи.
В качестве факторных выберем следующие признаки:
Норма времени на изготовление изделия, час. (НВр);
Материальные затраты на изготовление изделия, руб. (МЗ);
Сдельная расценка на изготовление изделия, руб. (РС);
Отпускная цена, руб. (Ц).
Месяца | НВр, час. | МЗ, руб. | ЗП, руб. | Ц, руб. | R,% |
1 | 1,2 | 108,2 | 8,3 | 179,62 | 1,7 |
2 | 1,1 | 108,2 | 8,2 | 179,50 | 1,5 |
3 | 1 | 108,2 | 8,3 | 179,55 | 1,4 |
4 | 1,2 | 108,3 | 8,2 | 179,60 | 1,6 |
5 | 1,3 | 108,3 | 8,2 | 179,60 | 1,5 |
6 | 1,2 | 108,3 | 8,3 | 179,60 | 1,4 |
7 | 1 | 108,3 | 8,2 | 179,61 | 1,5 |
8 | 1,1 | 108,2 | 8,2 | 179,60 | 1,6 |
9 | 1,1 | 108,2 | 8,2 | 179,61 | 1,3 |
10 | 1,2 | 108,2 | 8,2 | 179,60 | 1,4 |
11 | 1,1 | 108,1 | 8,2 | 179,60 | 1,5 |
12 | 1 | 108,1 | 8,3 | 179,60 | 1,3 |
С помощью функции "Регрессия" пакета "Анализ данных" произведен расчет уравнения множественной линейной регрессии
Для этого в меню "Сервис" выберем программу "Анализ данных" (рисунок 20). В появившемся окне устанавливаются входные интервалы Х (рентабельность) и Y (факторные признаки) устанавливаются метки и уровень надёжности после этого нажимается OK (рисунок 2.1)
Рис.2.1 Функция "Регрессия" пакета "Анализ данных".
Вывод итоговых данных функции "Регрессия" включает в себя регрессионную статистику, дисперсионный анализ, статистику Стьюдента и анализ остатков (рис.2.2):
Рис.2.2 Результаты проведенного анализа с помощью функции "Регрессия".
При коэффициенте детерминации R2 = 0,412600043
получено следующее уравнение регрессии:
R = 58,7 - 0,01* [НВр] - 0,44* [МЗ] - 1,14* [ЗП] - 0,535* [Ц].
При этом статистика Фишера указывает на истинность выдвинутой нами гипотезы о существовании связи ввиду превышения значения F - статистики над нормативной величиной значимости fa.
График остатков показывает небольшое отклонение (от - 11% до 4%) значений, рассчитанных по уравнению, от фактических значений результативного признака. Все это позволяет утверждать о существовании тесной связи между рассматриваемыми признаками.
Редактор Excel имеет в своем "арсенале" множество встроенных функций, которые позволяют рассчитывать в том числе финансово-экономические показатели (рис.2.3):
Рис.2.3 Меню "Мастер функций".
При разработке бизнес - плана производства нового вида продукции, который будет рассмотрен в следующей главе ФГУ ИК-1 сталкивается с необходимостью привлечения заемных средств в виде кредита для приобретения нового оборудования.
В данном пункте подробно рассмотрим механизм погашения кредита при определенных условиях.
Условия кредитования:
Обслуживающий банк - Сбербанк РФ;
Величина займа - 400 тыс. руб.;
Процентная ставка - 18% годовых;
Срок погашения - 4 года;
Условия кредитования предусматривают выплату долга методом равных сумм, который в свою очередь предполагает постоянные по величине платежи по погашению основной части кредита и выплату процентов, начисляемых от остатка основной части долга на начало отчетного периода.
Введем условные обозначения:
D0 - первоначальная величина займа;
r- годовая процентная ставка по кредиту;
T - срок погашения кредита;
k- ежегодное количество платежей;
i - номер платежа;
Di- выплаты по погашению основной части долга для i-го платежа;
Ii- размер процентных выплат для i-го платежа;
Ci- общий размер i-го платежа.
Тогда основные зависимости, характеризующие метод равных сумм, можно представить следующим образом:
(2.2)Основываясь на данной системе расчета, составим модель расчета погашения кредита по методу равных сумм
Таблица 2.2
Расчет платежей по погашению кредита, привлеченного ФГУ ИК-1
№ платежа | Остаток на начало периода, тыс. руб. | Основной платеж, тыс. руб. | Проценты по кредиту, тыс. руб. | Расходы по обслуживанию кредита, тыс. руб. | Баланс на конец периода, тыс. руб. |
1 | 400 | 20 | 14,4 | 34,4 | 380 |
2 | 380 | 20 | 13,68 | 33,68 | 360 |
3 | 360 | 20 | 12,96 | 32,96 | 340 |
4 | 340 | 20 | 12,24 | 32,24 | 320 |
5 | 320 | 20 | 11,52 | 31,52 | 300 |
6 | 300 | 20 | 10,8 | 30,8 | 280 |
7 | 280 | 20 | 10,08 | 30,08 | 260 |
8 | 260 | 20 | 9,36 | 29,36 | 240 |
9 | 240 | 20 | 8,64 | 28,64 | 220 |
10 | 220 | 20 | 7,92 | 27,92 | 200 |
11 | 200 | 20 | 7,2 | 27,2 | 180 |
12 | 180 | 20 | 6,48 | 26,48 | 160 |
13 | 160 | 20 | 5,76 | 25,76 | 140 |
14 | 140 | 20 | 5,04 | 25,04 | 120 |
15 | 120 | 20 | 4,32 | 24,32 | 100 |
16 | 100 | 20 | 3,6 | 23,6 | 80 |
Для расчета данных платежей используем "Мастер функций" функцию "ЕСЛИ" (Рисунок 2.3)
Рисунок 2.3 Использование функции ЕСЛИ для расчёта
После расчета получаться следующие данные (таблица 2.3)
Таблица 2.3 Структура выплат по погашению кредита на покупку оборудования ФГУ ИК-1
Основной платеж, тыс. руб. | 400,00 |
Проценты по кредиту, тыс. руб. | 144 |
Суммарные расходы по обслуживанию кредита, тыс. руб. | 464 |
Из результатов расчета видно, чтобы поганить кредит который равен 400 тыс. руб. на приобретение оборудования, понадобится 16 месяцев, в этом случае предприятие заплатит 464 тыс. руб. в который входит 144 тыс. руб. процент по обслуживанию кредита.
В настоящее время разработано множество видов специализированного программного обеспечения для инвестиционного анализа и бизнес - планирования. Данные программные продукты позволяют провести комплексную оценку инвестиционных проектов и расчет необходимых показателей эффективности. В основе большинства программ лежит методика оценки инвестиционных проектов, разработанная Организацией Объединенных Наций по промышленному развитию (UNIDO). При этом многие программы, выходящие на российский рынок, учитывают и специфику российской экономики.
Все специализированные бизнес - программы можно подразделить на открытые и закрытые. Если закрытые системы предполагают использование готовых форм, при условии, что функции и способы вычислений скрыты от пользователя, то открытые, напротив, предполагают возможность самостоятельной корректировки пользователем. В данной работе рассмотрим применение закрытой системы ProjectExpert.