Смекни!
smekni.com

Информатика как единство науки и технологии (стр. 2 из 30)

2.2 МЕСТО ИНФОРМАТИКИ В СИСТЕМЕ НАУК
Рассмотрим место науки информатики в традиционно сложившейся системе наук (техни-ческих, естественных, гуманитарных и т.д.). В частности, это позволило бы найти место обще-образовательного курса информатики в ряду других учебных предметов.
Напомним, что по определению А.П.Ершова информатика – «фундаментальная естест-венная наука». Академик Б.Н.Наумов определял информатику «как естественную науку, изу-чающую общие свойства информации, процессы, методы и средства ее обработки (сбор, хране-ние, преобразование, перемещение, выдача)».
Уточним, что такое фундаментальная наука и что такое естественная наука. К фунда-ментальным принято относить те науки, основные понятия которых носят общенаучный харак-тер, используются во многих других науках и видах деятельности. Нет, например, сомнений в фундаментальности столь разных наук как математика и философия. В этом же ряду и инфор-матика, так как понятия «информация», «процессы обработки информации» несомненно имеют общенаучную значимость. Естественные науки – физика, химия, биология и другие – имеют дело с объективными сущностями мира, существующими независимо от нашего сознания. Отнесение к ним информатики отражает единство законов обработки информации в системах самой разной природы – искусственных, биологических, общественных.
Однако многие ученые подчеркивают, что информатика имеет характерные черты и дру-гих групп наук – технических и гуманитарных (или общественных).
Черты технической науки придают информатике ее аспекты, связанные с созданием и функционированием машинных систем обработки информации. Так, академик А.А.Дородницын определяет состав информатики как «три неразрывно и существенно связан-ные части: технические средства, программные и алгоритмические». Первоначальное наимено-вании школьного предмета «Основы информатики и вычислительной техники» в настоящее время изменено на «Информатика» (включающее в себя разделы, связанные с изучением тех-нических, программных и алгоритмических средств). Науке информатике присущи и некоторые черты гуманитарной (общественной) науки, что обусловлено ее вкладом в развитие и совершенствование социальной сферы. Таким образом, информатика является комплексной, междисциплинарной отраслью научного знания.

4

4.1 Формы представления, методы оценки и способы передачи информации

Анализируя информацию, мы сталкиваемся с необходимостью оценки качества и определения количества получения информации. При оценке информации различают три аспекта: синтаксический, семантический и прагматический.

Синтаксический аспект связан со способом представления информации вне зависимости от ее смысловых и потребительских качеств и рассматривает формы представления информации для ее передачи и хранения (в виде знаков и символов). Этот аспект необходим для измерения информации. Информацию, рассматриваемую только в синтаксическом аспекте, называют данными.

Семантический аспект передает смысловое содержание информации и соотносит ее с ранее имевшейся информацией (рис. 2).

Рис. 2. График семантической меры: SП– тезаурусная мера получателя; Icсемантическое количество информации

Прагматический аспект передает возможность достижения цели с учетом полученной информации.

где Р0 – вероятность достижения цели до получения информации; Р1 – вероятность достижения цели после получения информации; IПпрагматическое количество информации.

Определить качество информации чрезвычайно сложно, а часто и вообще невозможно. Какие-либо сведения, например исторические, могут десятилетиями считаться ненужными, но при наступлении какого-то события их ценность может резко возрасти. Определить количество информации не только нужно, но и можно. Это прежде всего необходимо для того, чтобы сравнить друг с другом массивы информации, определить, какие размеры должны иметь материальные объекты (бумага, магнитная лента и т. д.), хранящие эту информацию.

Можно выделить три основные характеристики, используемые для измерения количества и качества передачи и приема информации:

1. Частотный диапазон– чем выше частота, тем больше информации можно передать в единицу информации (рентгеновское излучение несет больше информации, чем метровый диапазон).

2. Динамический диапазон – чем шире диапазон частот, тем больше информации можно пропустить в единицу времени.

3. Уровень шума – чем меньше помех, тем больше информации можно передать без ее искажения.

Для определения количества информации необходимо найти способ представить любую ее форму (символьную, текстовую, графическую) в едином виде. Рассмотрим некоторые критерии применительно к наиболее распространенным формам информации.

Звуки. Для звуковых колебаний совпадение формы сигнала на передаче и приеме не является обязательным. Здесь важно сохранение соотношений между амплитудами частотных компонентов, из которых состоит звук.

Частотный диапазон:

– 16–20 000 Гц – различает высококлассный музыкант;

– 30–15 000 Гц – отличное (50–10 000 Гц – хорошее) воспроизведение музыки;

– 300—3400 Гц – отличное качество связи для разговора по телефону.

Динамический диапазон – логарифм отношения максимального значения средней мощности звука к средней мощности наиболее слабых звуков. Соотношение между звуками различной интенсивности измеряется в логарифмических единицах, так как человеческое ухо сравнивает не абсолютное, а относительное изменение мощности звука. Сравнивая между собой интенсивности воздействия двух звуковых колебаний, имеющих соответственно мощности Р1 (максимальное значение средней мощности звука) и Р2(средняя мощность наиболее слабых звуков), пользуются выражениями:

Например, динамический диапазон телефонной речи составляет 43 дБ; оркестра – 56 дБ; истребителя и рок-группы – 120 дБ. Уровень шума при телефонной связи должен быть не менее чем на 34 дБ ниже средней мощности полезного сигнала. Допустимая величина помехи при музыкальной передаче должна быть снижена еще больше – до 44–47 дБ.

Изображения. Чтобы передать с помощью электромагнитных волн некоторое изображение, необходимо каждый элемент этого изображения один за другим превратить в последовательность сигналов.